A Round-Efficient Distributed Betweenness
Centrality Algorithm

Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder
Gill, Bozhi You, Keshav Pingali, and Vijaya Ramachandran

Computer Science NOKIA Bell Labs

@ FFZALY

AN JIAOTONG UNIVERSITY

Betweenness Centrality

m Betweenness Centrality (BC) used to
determine relative importance of node in
graph

m Applications

m Key actor detection in terrorist nets
m Disease studies

m Power grid analysis

m River flow confluence

m Distributed implementations necessary

m Large graphs with billions of
nodes/edges

m BC takes hours to complete even if
approximating

Figure Credit: Claudio Rocchini, Creative Commons Attribution 2.5 Generic

Betweenness Centrality Definition

m BC: fraction of shortest paths in which
node appears

m Example: consider the 2 shortest paths from A to E:
m B appears in 1: %; C appears in 1: %; D appears in 2: % =1

Betweenness Centrality Definition

m BC: fraction of shortest paths in which
\@@Q node appears

m Example: consider the 2 shortest paths from A to E:
m B appears in 1: %; C appears in 1: %; D appears in 2: % =1

Betweenness Centrality Definition

m BC: fraction of shortest paths in which
@Q node appears

m Example: consider the 2 shortest paths from A to E:
m B appears in 1: %; C appears in 1: %; D appears in 2: % =1

Betweenness Centrality Definition

m BC: fraction of shortest paths in which
node appears

m Example: consider the 2 shortest paths from A to E:
m B appears in 1: %; C appears in 1: %; D appears in 2: % =1

ost, number of shortest paths from s to t; os(v), number of
shortest paths from s to t passing through v, v # s # t.

Betweenness Centrality (BC)

BC(v)= Y, 2l
s#t#v

From definition: about n® operations (n is number of vertices)

Brandes Betweenness Centrality

m Shortest-path DAG with shortest
path counts rooted at node s:
propagate dependencies (Jse) along
DAG predecessors

Brandes Betweenness Centrality

m Shortest-path DAG with shortest
path counts rooted at node s:
propagate dependencies (Jse) along
DAG predecessors

BC from Dependencies of a Node

BC(V) = Zs;év 55'(‘/)
where (55.(V) = ZW VGPS(W) 05 (1 + 550(W))

Ps(w) are predecessors of w in DAG

m Brandes BC [1]: sum dependencies from all DAGs: O(nm)
operations (m is number of edges)

m All-pairs shortest paths (APSP) or k-source shortest paths
(k-SSP, shortest paths for subset of k nodes) to find DAGs

[1] U. Brandes. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 2001.

Related APSP and BC Work

m APSP

m O(n) round undirected, unweighted APSP algorithms [2,3,4]
m Lenzen-Peleg: prior best unweighted APSP
m BC

m Asynchronous Brandes BC (ABBC): asynchronous,
shared-memory [5]

m Maximal Frontier BC (MFBC): distributed, sparse-matrix
Brandes BC [6]

m Hua et al.: distributed BC for undirected, unweighted graphs
[7]

[2] S. Holzer and R. Wattenhofer. Optimal Distributed All Pairs Shortest Paths and Applications. PODC 2012.
[3] D. Peleg, L. Roditty, and E. Tal. Distributed Algorithms for Network Diameter and Girth. ICALP 2012.

[4] C. Lenzen and D. Peleg. Efficient Distributed Source Detection with Limited Bandiwidth. PODC 2013

[5] D. Prountzos and K. Pingali. Betweenness centrality: algorithms and implementations. PPoPP'13.

[6] E. Solomonik, M. Besta, F. Vella, and T. Hoefler. Scaling Betweenness Centrality Using
Communication-efficient Sparse Matrix Multiplication.

[7] Q. S. Hua, H. Fan, M. Ai, L. Qian, Y. Li, X. Shi, and X. Jin. Nearly Optimal Distributed Algorithm for
Computing Betweenness Centrality. ICDCS 2016.

Motivation for Our Work

m Practical implementations of theoretical, distributed
O(n)-round APSP/BC algorithms do not exist

m Existing distributed BC mainly use SSSP/k-SSP with Brandes
BC

m High amount of bulk-synchronous parallel (BSP) rounds with
expensive communication barriers

Tradeoff exploration:
decreasing number of rounds at
cost of increasing computation
per round

Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality
(MRBC) for directed and undirected unweighted graphs

m CONGEST: (known) n nodes, m edges, diameter D: APSP in
min(n+ O(D), 2n) rounds and mn 4+ O(m) messages

Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality
(MRBC) for directed and undirected unweighted graphs

m CONGEST: (known) n nodes, m edges, diameter D: APSP in
min(n+ O(D), 2n) rounds and mn 4+ O(m) messages
m In systems that detect termination: k-SSP in at most kK + H

rounds and m - k messages, H is largest finite shortest path
distance for the k sources

Our Contributions: Theory

Min-Rounds APSP and Min-Rounds Betweenness Centrality
(MRBC) for directed and undirected unweighted graphs

m CONGEST: (known) n nodes, m edges, diameter D: APSP in
min(n+ O(D), 2n) rounds and mn 4+ O(m) messages

m In systems that detect termination: k-SSP in at most kK + H
rounds and m - k messages, H is largest finite shortest path
distance for the k sources

m BC: at most twice the rounds/messages as APSP /k-SSP

Our Contributions: Practice

m MRBC implementation in D-Galois[8] with communication
optimization exploiting MRBC properties
m MRBC evaluation
m 3x faster than prior state-of-the-art MFBC
m 2.8x speedup over Brandes BC on high diameter graphs

[8] R. Dathathri, G. Gill, L. Hoang, H.V. Dang, A. Brooks, N. Dryden, M. Snir, K. Pingali. Gluon: A
Communication-Optimizing Substrate for Distributed Heterogeneous Graph Analytics. PLDI 2018.

Outline

Introduction

MRBC
m Min-Rounds APSP
m Min-Rounds BC
m D-Galois Model and Delayed Synchronization

Evaluation

Conclusion

10

CONGEST Model for Distributed Algorithms

m Machines are nodes, edges are communication channels

m Send message (constant number of words) per round to do

updates
N
N

603

11

k-SSP Example: Initial State

(distance, sourcelD)

m Left: Initial State of k-SSP
where kK = 2 sources A and B

m Vertices store current distance
from a source to self in
lexicographically sorted vector

m Every round, vertex chooses 1
(distance, source) pair to send
along outgoing edges

12

APSP: When To Send A Pair?

m Problem: sent distance may not be final distance associated
with source

13

APSP: When To Send A Pair?

m Problem: sent distance may not be final distance associated
with source

Min-Rounds APSP New Insight: Message Send Rule

Send unsent distance d with position p on sorted vector with
corresponding source in round r if p+d=r

m Like Dijkstra: sends only final distance

m Resulting algorithm pipelines messages: orchestrates updates
across edges and reduces amount of messages sent

13

k-SSP Example: Round 1

(distance, sourcelD)

Message Send Rule

Send unsent distance d with position
p on sorted vector with
corresponding source in round r if
p+d=r

m Example: (0, A) chosen because

0+ 1 (1 is position on vector)
equals round 1

14

k-SSP Example: Round 2

©, A

0, B)

a,A)

(21A)

(1,A)

(1,8)

E

(1,B)

(distance, sourcelD)

@A

15

k-SSP Example: Round 3

©, A

0, B)

A

a.A

(1,B)

E

(1.8)

(distance, sourcelD)

(2,A)

(2,8)

(2,A)

(2,B)

16

k-SSP Example:

Round 4 (Final)

C
A
A
©, A D
a.A
(1,8)
B
0, B)
E
(1.8)

(distance, sourcelD)

@A

(2,B)

@A

(2,B)

17

APSP for Brandes BC

Min-Rounds APSP as subroutine for Brandes BC backward
accumulation

Three Additions to APSP

m Send shortest path count with distance/source ID in APSP

m Timestamp round number in which message is sent

m Track predecessors of shortest path DAG for each source

18

Min-Rounds BC: Reversing Global Delays

Insight: leverage saved timestamps, send final values

O

@8,1,0.1

—
] 28,204] 252,01
(1,B,1,0),2 (1,B,1,0),3
(distance, sourcelD, #shortpaths, dependency), sentround (distance, sourcelD, #shortpaths, dependency),sendround

Timestamp Pipelining By Reversing Global Delay

Send source's dependency value to predecessors in source's DAG in
reverse round order: total rounds + 1 - timestamp

19

Backward Accumulation: Round 1

Brandes formulation to propagate finalized dependencies

(distance, sourcelD, #shortpaths, dependency),sendround

20

Backward Accumulation: Round 2

O

A1 [(2A1,0,2
A1

B,25 [(1,B,1,1.5)2

(distance, sourcelD, #shortpaths, dependency),sendround

21

Backward Accumulation: Round 3

°

ISR
— °

I

(distance, sourcelD, #shortpaths, dependency),sendround

22

Backward Accumulation: Round 4

(distance, sourcelD, #shortpaths, dependency),sendround

23

Final Result

Add source dependencies to get BC contribution

XY
—

)
C] @
L

(distance, sourcelD, #shortpaths, dependency),sendround

To get BC, use APSP rather than k-SSP

24

D-Galois and the Execution Model

m D-Galois: distributed graph analytics system using
shared-memory Galois and Gluon communication substrate

o‘: 0

E

Host 1 Host 2

m Distribute edges from graph; cached-copies (proxies) of
endpoints created

m Execution in bulk-synchronous parallel (BSP) rounds:
computation then communication to sync proxies

25

Example Execution in D-Galois: Round 1 Compute

Computation: CONGEST “message sends” along edges

Host 1 Host 2

(distance, sourcelD, #shortpaths), sentround

26

Example Execution in D-Galois: Round 2 Sync

Synchronization of proxies D and E after computation

Host 1 Host 2

(distance, sourcelD, #shortpaths), sentround

27

Redundant Synchronization (1)

Beginning of Round 3: Synchronize all data on proxy G

Host 2

(distance, sourcelD, #shortpaths), sentround

28

Redundant Synchronization (1)

After compute, stale value on host 2: needs synchronization again!

°

° @8

(distance, sourcelD, #shortpaths), sentround

Host 2

SN @A)

G
@A103
LeXn | []

29

Optimization: Delayed Synchronization in D-Galois

Beginning of Round 3, sync only source A data on G
(distance 2 + position 1 = round 3)

Host 1 Host 2

Delayed Synchronization

Synchronize updated
data associated with a
source on a proxy only if

that data meets the SR I

message send rule's (>

conditions —]
L]

(distance, sourcelD, #shortpaths), sentround

m Intuition: data not read until round it is sent

m Availability of proxies allows delaying synchronization

30

Delayed Synchronization Example Continued (I)

Round 3 compute

L]

\\
~
Cosns] eon

I
I

(distance, sourcelD, #shortpaths), sentround

SN eA
.
I

31

Delayed Synchronization Example Continued (1)

Beginning of Round 4: synchronize source B data on proxy G

(distance 2 + position 2 = round 4)

()

I

(distance, sourcelD, #shortpaths), sentround

Host 2

| > G—»@
L]

(2.B,2)

Delayed sync reduces network congestion and communication

volume

32

Outline

Evaluation

33

Experimental Setup: Evaluated Algorithms

Asynchronous Brandes BC (ABBC)

Maximal Frontier BC (MFBC), sparse-matrix-based
Synchronous Brandes BC (SBBC), Brandes in D-Galois
Min-Rounds BC (MRBC)

| System (A)synchronous? Distributed? Batching?

ABBC Galois Async N N
MFBC CTF Sync Y Y
SBBC D-Galois Sync Y N
MRBC | D-Galois Sync Y Y

We focus on SBBC and MRBC
m ABBC excellent for high diameter graphs if fits in memory

m MFBC performs moderately well, slows as graphs grow

34

Experimental Setup: Platform

| Low Diameter High Diameter

‘ livejournal rmat24 friendster kron30‘ indochina04 road-europe gshl5 clueweb12

V| 4.8M 17M 66M 1,073M 7.4M 174M 988M 978M
|E| 69M 268M 3,612M 17,091M 194M 348M 33,877TM 42,574M
H (Estimated Diameter) 17 9 25 9 45 22541 103 501

m Platform: Stampede2’s Skylake cluster
m Intel Xeon Platinum 8160, 48 cores on 2 sockets per machine
m 2.1GHz clock rate, 192GB DDR4 RAM

m Graphs run on up to 256 machines

m Low diameter graphs < 25, high diameter greater than 25
m Web crawls (such as clueweb12) also high-diameter

35

Execution Times, Low Diameter Graphs

SBBC: O(k - H) BSP rounds MRBC: O(k + H) BSP rounds
H = largest shortest path distance for k sources

Time (sec)

400
350
300
250
200
150
100

50

8000
7000
6000
5000
4000
3000
2000
1000

Low Diameter
350

300
250
200
150
100

50

0
livejournal, k=4096, H=17 rmat24, k=4096, H=9

4000
3500
3000
2500
2000
1500
1000

500

0
friendster, k=4096, H=25 kron30, k=4096, H=9
SBBC ™ MRBC

m MRBC round reduction (which leads to communication improvements)
does not outweigh compute overhead

36

Execution Times, High Diameter Graphs

SBBC: O(k - H) BSP rounds MRBC: O(k + H) BSP rounds
H = largest shortest path distance for k sources

Time (sec)

350
300
250
200
150
100

50

4500
4000
3500
3000
2500
2000
1500
1000

500

High Diameter
12000
10000
8000
6000

- 20

2000
- 0 .
indochina04, k=4096, H=45 road-europe, k=32, H=22541

4000
3500
3000
2500

2000
1500
1000

500

0
gsh15, k=2048, H=103 clueweb12, k=256, H=501
SBBC ®m MRBC

m MRBC outperforms SBBC (2.8x faster): round reduction and
communication improvement more significant

37

Execution Time of SBBC/MRBC from 64 to 256 Hosts

gsh15 clueweb12
4096 -
o
()
L
o 4096-
£ 2048 -
|_
64 128 256 64 128 256
Hosts
SBBC -+ MRBC

m Both SBBC and MRBC scale as number of hosts increase

m Communication time of SBBC does not scale as well
compared to MRBC

38

Conclusion

m Presented round-efficient distributed APSP and BC algorithm
(MRBC) that improves communication by pipelining message
sends

m MRBC in D-Galois over Brandes BC: 14x reduction in
rounds, 2.8 speedup for high-diameter graphs

Source Code:
https://github.com/IntelligentSoftwareSystems/Galois/
Artifact:
https://zenodo.org/record/2399798

Galofis

https://github.com/IntelligentSoftwareSystems/Galois/
https://zenodo.org/record/2399798

Backup Slides

40

Execution Time of SBBC/MRBC at 256 Hosts, Breakdown

kron30 gsh15 clueweb12

3000 - 40001 - 3000 -
1 5 2

3000 -
u, 2000 - 2000 - 12.8

2000 -
. o 299 259 OB

()

£ . .

100353 GB 1000- O 1000° &g
GB

0- 0- 0-

S S, S
R S A SN
Il Computation Non-overlapped Communication

41

More Topics Covered in the Paper

m Termination detection routine for Min-Rounds APSP which

reduces the round complexity and termination detection in
D-Galois

m Proofs of correctness for the algorithm and its optimizations

m More detailed analysis of experiments

42

Effect of D-Galois Optimization

Note difference in CONGEST model and D-Galois model

m Number of Rounds
m MRBC reduces rounds over SBBC in both models (same
bounds apply)

m Messages Sent
m CONGEST: messages sent along edges in SBBC/MRBC are
same (only final value is sent)
m D-Galois
m SBBC: proxy distance from source updated/sent only once
(updated value is final value)
m MRBC: proxy distance updated multiple times before
finalization, i.e. communicate every update, not just when
value is finalized

Without optimization, MRBC may send more messages; expected
to perform worse

43

Best Execution Times (1, 32 Hosts) on Small Graphs (1)

Low Diameter

20000 -
1800 1200 88971.5
1600) >
1400 1000 " 15000 5
1200 800 £ /
1000 10000 g %
800 / / 600 / = y
600 y y 400 y s
5000
400 200 =
- m ¢

—
O
[0 0 o
() livejournal, 4096 sources rmat24, 4096 sources friendster, 4096 sources
(0] . .
£ High Diameter
= Lavy 12000 7
1200 '
10000
1000 E E
800 = 8000 g
600 = 6000 s ;
400 s ; 4000 5 '
200 = y 2000 5
oS o 3 [
indochina04, 4096 sources road-europe, 32 sources

mABBC mMFBC = SBBC m MRBC
m MRBC is 3x faster than MFBC on average
m SBBC also outperforms MFBC

44

Best Execution Times (1, 32 Hosts) on Small Graphs (II)

Low Diameter

20000
1800 1200 88971.5
1600 .
1400 1000 15000 g
1000 200 £
10000
800 / 600 , = /
=
Iy 200 4 400 y 5000 s | 4
e B m - m "
Q 0 0 0 o
() livejournal, 4096 sources rmat24, 4096 sources friendster, 4096 sources
(0] . .
£ High Diameter
= 1400
= e 12000
1000 = 10000 >
=1 S
8000
800 5 E
600 = 6000 s
400 s " 4000 = y
200 5 2000 5
o] — o 151 |
indochina04, 4096 sources road-europe, 32 sources

mABBC mMFBC = SBBC m MRBC
m SBBC best for graphs with low-diameter
m MRBC better for high-diameter

Best Execution Times (1, 32 Hosts) on Small Graphs (I1)

Low Diameter
20000 ;
1800 1200 88971.5
1600
1400 1000 < 15000 E’
1200 - 800 2
1000 10000 5}
800 600 =
600 400]
I 400 5000 2
m - m G
Q 0 o 0 o
n livejournal, 4096 sources rmat24, 4096 sources friendster, 4096 sources
(0] . .
£ High Diameter
= 1400
= e 12000
1000 10000 >
S S
8000
800 5 E
600 = 6000 s
400 &S 4000 =
= ,
200 5 2000 . 5
o O o X8 |
indochina04, 4096 sources road-europe, 32 sources

mABBC mMFBC = SBBC m MRBC
m ABBC fast on high diameter graphs
m ABBC extremely slow otherwise

46

	Introduction
	MRBC
	Min-Rounds APSP
	Min-Rounds BC
	D-Galois Model and Delayed Synchronization

	Evaluation
	Conclusion

