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Abstract—We describe a novel multi-machine multi-GPU
implementation of triangle counting which exploits a novel
application-agnostic graph partitioning strategy that eliminates
almost all inter-host communication during triangle counting.
Experimental results show that this distributed triangle counting
implementation can handle very large graphs such as clueweb12,
which has almost one billion vertices and 37 billion edges, and
it is up to 1.6x faster than TriCore, the 2018 Graph Challenge
champion.

Index Terms—triangle counting, distributed-memory, multi-
GPUs, clusters, partitioning

I. INTRODUCTION

Triangle counting is a simple example of finding motifs
(patterns) within undirected graphs, and it is used in appli-
cations such as social network analysis [1], graph statistics
(e.g. clustering coefficients [2]), and k-truss identification [3].
The problem is to count the number of triangles contained in
an undirected graph'.

Triangle counting algorithms are based on the following
observation. Vertices v and w are said to be neighbors if they
are connected by an edge. Let neighbors(v) denote the set
of neighbors of a given vertex v. The number of triangles
that contain given vertices v, and vy is the cardinality of the
set neighbors(vy) N neighbors(ve). This can be computed
efficiently if the graph representation permits efficient access
to the set of neighbors of a given vertex as Compressed
Sparse Row (CSR) and Compressed Sparse Column (CSC)
representations do. Two vertices that are not neighbors in the
graph cannot be part of a triangle, so triangle counting is often
implemented by iterating over all edges (v1,v2) of the graph
and, for each edge, intersecting the neighbor lists of v; and
v2. The intersection of neighbor lists can be done efficiently
if the neighbor list of each vertex is sorted by a key such as
the vertex ID.

Although this algorithm is straightforward, implementing it
efficiently can be challenging. First, the graphs we deal with
today are very large; for example, the largest graph we use in
this study is clueweb12, which has almost one billion vertices
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LA set of vertices {v1,v2,v3} is said to be form a triangle if there is an
edge in the graph between each pair of these vertices.

and 37 billion undirected edges (and 1,995,295,290,765 trian-
gles). Second, the basic triangle counting algorithm described
above is not a vertex program, which are programs in which
vertex labels are updated iteratively using the labels of their
neighbors in the graph (it is possible to reformulate the
algorithm as a vertex program, but this is tricky and has its own
disadvantages). Third, the DRAM of most machines is limited
to 64-128 GB. This means execution on shared memory
systems may not be possible, so alternatives such as distributed
execution or out-of-core execution are necessary. However,
systems support for non-vertex-programs is currently very
limited. In particular, existing graph partitioning algorithms
are designed for vertex programs, and it is not clear how one
uses them effectively for triangle counting.

These problems limit the effectiveness of current implemen-
tations of triangle counting. Most implementations are either
sequential or shared-memory multicore implementations [4],
[5] so they cannot deal with very large graphs unless one uses
a very expensive machine with many TBs of DRAM or non-
volatile memory (NVM) such as Intel’s Optane memory. Other
implementations are single GPU implementations [5], [6],
but these are even more constrained by memory limitations.
Section II describes this related work in more detail.

In this paper, we address the triangle counting problem
using distributed computing. Our implementation is based
on a novel application-agnostic graph partitioning strategy,
discussed in Section III, that eliminates almost all communi-
cation for distributed triangle counting. Section IV describes
our triangle counting application which uses this partition-
ing strategy. Each machine in a distributed cluster performs
triangle counting independently in its own partition without
communicating with other hosts. At the end, the total triangle
count is obtained by aggregating the local triangle counts from
all machines. This triangle counting solution can be run in the
cloud, which is very cost-effective.

Section V describes the experimental evaluation of our
implementation called DistTC on a distributed multi-GPU
platform. The results show that our solution can handle very
large graphs such as cluewebl12, which has almost one billion
vertices and 37 billion undirected edges, and it is up to 1.6x
faster than TriCore, the 2018 Graph Challenge champion.



II. RELATED WORK

Triangle counting has been implemented on various plat-
forms including shared-memory CPUs [7], clusters [8], [9],
[10], [11] and GPUs [12], [13]. We briefly discuss this prior
work below.

Triangle counting on shared memory CPUs:
Shun et al. [14] detail a cache-oblivious parallel triangle
counting on shared-memory multicore CPUs. Tangwongsan
et al. [7] present parallel algorithms for streaming graphs
on the shared memory CPUs. Zhang et al. [15] compare the
performance of different triangle counting optimizations, such
as hashing, merging, binary search, and SIMD.

Optimizations that apply to CPUs may not necessarily be
useful for GPUs. For example, binary search of neighbor
lists may not give faster performance on CPUs, but it does
give better performance on GPUs due to coalesced memory
accesses [15], [16].

Triangle counting on single GPU: Green et al. [17] and
Voegele et al. [5] implement triangle counting on a single
GPU using a merge-based approach [18]. Date et al. [19]
present a GPU algorithm that leverages the CPU as well to
improve the performance of both triangle counting and k-
truss: they use GPU zero-copy memory and unified memory
capabilities to decrease CPU-GPU data transfer overhead, and
they use the CPU to perform some computations. Wang et
al. [20] study three techniques for triangle counting on GPU:
subgraph matching, programmable graph analytics with a set-
intersection approach, and a matrix formulation based on
sparse matrix-matrix multiplies. Hu er al. [16] presented a
distributed implementation of triangle counting, and they noted
that even on a single GPU, a binary search based intersection
method for finding triangles can speed up computation on
GPUs due to improved exploitation of memory bandwidth.

Our implementation leverages the binary search based inter-
section method [16] to improve performance on a single host
which in turn improves overall distributed runtime. We also
use the CPUs to do graph partitioning and graph preprocess-
ing.

Triangle counting on distributed CPUs and GPUs:
Suri et al. [21] implement triangle counting using MapReduce.
They rank vertices by degree and distribute them across
hosts in a round-robin fashion. Similarly, several other tech-
niques [22], [23], [24], [25] were also proposed to improve
the performance of triangle counting using MapReduce frame-
work. PDTL [26] is a distributed CPU triangle counting solver
that duplicates the graph across machines and does static
load-balancing to split tasks. Pearce [27] presents a CPU
distributed triangle counting algorithm implemented in dis-
tributed asynchronous graph processing framework HavoqGT.
TriCore [28] is a multi-GPU triangle counting implementation
which was used in a 2018 Graph Challenge champion’s
implementation [29]. It partitions the CSR data across multiple
GPUs and streams the edgelist from the CPU memory to the
GPU memory on the fly. It uses binary search to increase
coalesced memory accesses [16] and employs load balancing

by dynamically assigning independent units of work (created
during preprocessing) to GPUs.

Our implementation is similar to TriCore [28], [29] in that
it uses binary search based intersection as well as independent
units of work across multiple GPUs. However, our partitioning
is static while TriCore dynamically assigns partitions to GPUs
on the fly. Additionally, our partitioning policy can be used for
multi-machine CPU and GPU implementations.

Miscellaneous: Huang et al. [30] implement triangle count-
ing on an FPGA: they use the low-latency capabilities of
FPGA to improve energy efficiency over GPU implementa-
tions. Approximation techniques for triangle counting [24],
[31] have also been studied. Additionally, triangle counting
has been explored for streaming graphs (e.g., [32], [33], [34]).

Our implementation is targeted at static graphs since parti-
tioning is done once at the beginning. However, our distributed
algorithm is platform-agnostic as described in Section IV: one
can use our partitioning policy to distribute computation across
multiple platforms and aggregate the independent counts at the
end to arrive at a correct solution, regardless of whether the
compute units are CPUs, GPUs or FPGAs.

III. GRAPH PARTITIONING POLICY

The goal of our partitioning is to distribute an undirected
graph across multiple machines for triangle counting.

A. Proxy Model for Partitioning

Our graph partitioning is based on the proxy model of
partitioning [35] in which edges are distributed among the
host machines and cached copies of the endpoints called proxy
vertices are created. One proxy for a vertex in the graph will
be designated a master proxy which is responsible for the
canonical value of the vertex; all other proxies are designated
as mirror proxies.

Periodically, the proxy vertices are synchronized to keep
computation consistent across hosts. This involves mirror
proxies communicating updates to the master proxy which
will use them to determine the vertex’s canonical value. This
value is then communicated to all proxies for use in local
computation.

This model can be extended further to support proxy edges:
the partitioning can duplicate an edge among multiple hosts,
and similarly, one edge will be designated the master proxy
to reconcile edge data among hosts as necessary.

B. Partitioning for Triangle Counting

As detailed in Section I, triangle counting requires knowing
the neighbors of vertices in order to compute the intersection
of the neighbor lists. In a distributed setting, edges are dis-
tributed across machines, and not all the edges of a triangle
may exist for a vertex on a host. Therefore, communication
across hosts to determine the full set of neighbors would be
required if not all edges are present.

To reduce communication, we partition the graph such that
all proxy vertices on a particular host will know which vertices
on that host are its neighbors; in other words, if two vertex
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Fig. 1: Steps of partitioning for triangle counting.

proxies on a host are neighbors in the original graph, then
an edge proxy will exist between the two proxies on that
host. By doing so, it is possible to count the triangles that
the vertex proxies present on a host create without requiring
communication.

We detail this partitioning with an example. First, to avoid
counting duplicate triangles, triangle counting algorithms typ-
ically establish a total order among the vertices of a given
graph. Hence, we convert the given undirected graph (Fig-
ure la) into a directed acyclic graph (DAG), where the
undirected edges become directed edges based on some total
ordering of vertices (Figure 1b; the ordering is based on
alphabetical order). In this example, the vertex lower in the
total order will point to a vertex higher in the total order.

Next, we partition the directed graph across machines.
Figure 1c shows an example of partitioned graphs of the

original graph shown in Figure 1b. We use an outgoing edge-
cut policy to distribute edges: all outgoing edges of a vertex
are placed on the host which contains the master proxy. In
the example, vertices A, B, and C, along with their outgoing
edges, are assigned to Host 1 while the vertices D, E, and F,
along with their outgoing edges, are assigned to Host 2. For
each edge whose endpoints are not assigned to a host, mirror
proxies are created. For example, Host 1 creates the mirror
proxies for D and E, as they are endpoints for the edges (C,
D) and (C, FE) which are not present.

Finally, edge proxies are created as necessary to get the
proxy-induced subgraph on each host. Figure 1d illustrates
this: since the edge (D, E) exists in the original graph, a mirror
proxy for the edge is created on Host 1.

The creation of edge proxies allows local triangle count-
ing to proceed without communication. To understand this,
consider Figure 1c, which shows the partitioned graph before
edge proxies are created. Note that communication is required
to count a triangle whose endpoint(s) is a mirror proxy; for
instance, triangle C'DE cannot be identified on Host 1 without
communication with Host 2 to determine if edge (D, FE)
exists. The creation of the proxy-induced subgraph avoids
this problem and allows Host 1 to find the triangle without
communication.

C. Discussion

The partitioning strategy described in this section is
application-agnostic and is implemented in the Customizable
Streaming Partitioner (CuSP) framework [36]. The experimen-
tal results in this paper are based on the partitions created by
CuSP.

IV. DISTRIBUTED TRIANGLE COUNTING

Figure 2 details the overall execution of our distributed tri-
angle counting implementation. The graph is read, partitioned,
and processed to sort the neighbor lists based on vertex IDs.
The partitioned graph is then marshaled to the GPU for GPU
processing. Finally, distributed triangle counting in done in
two steps.

1) Each host counts the number of triangles locally.

2) The local counts are aggregated at the end of local
computation to get the final triangle count.

Note that during the computation, communication is needed
only for the aggregation at the very end.

A. Local Triangle Counting

To count triangles locally on each host, we modify an
IrGL-based triangle counting implementation [5], [37] to use
binary search to find triangles instead of edgelist intersection
to improve GPU locality [28], [29]. As the graph is already
preprocessed before it is marshaled to the GPU, there is
no need to do graph preprocessing on the GPU: it is only
responsible for counting triangles.

Local triangle counting on each host must take into account
the fact that the graph is distributed across multiple hosts. To
avoid overcounting triangles, a triangle ABC, A < B < C'is
only counted if the vertex A is a master proxy.
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Fig. 2: Execution flow for distributed triangle counting.

B. Correctness of Distributed Triangle Counting

We briefly discuss the correctness of our distributed triangle
counting. Let ABC be a triangle such that A < B < C.
For correctness, it (1) must be counted if it exists and (2)
must be counted exactly once. We describe three observations
from the partitioning described in Section III that are useful
in reasoning about the correctness of the distributed triangle
counting algorithm.

Observation 1. If undirected edges {A, B} and {A, C'} exist,
then directed edges (A, B) and (A, C) will be present on the
same host that contains the master proxy of A. This holds
because the host that has the master proxy has all its outgoing
edges. This implies proxies for B and C exist on that host as
well.

Observation 2. If proxies B and C exist on some host H and
undirected edge { B, C'} exists, then an edge proxy for directed
edge (B, C) will exist on H.

Observation 3. A triangle ABC' can exist on more than one
host since proxies for A, B, and C may exist on more than
one host.

Let Host H, contain the master proxy for A. From Observa-
tion 1, H, contains edges (A, B) and (A, C), and H, contains
the proxies for B and C. Following Observation 2, the edge
(B, C) exists on H,, which means the triangle is counted
by H, since all three edges exist and A is a master proxy.
Therefore, if the triangle exists, it is counted by our approach.
Secondly, it will be counted only once: even if triangle ABC'
exists on any other host H; (Observation 3), it not counted by
the host since A’s master proxy only exists on H,. Thus, if a
triangle exists, it is counted exactly once.

C. Platform-Agnosticism

The approach described here can be used with any local
triangle counting algorithm, provided it counts a triangle ABC
only if A is a master proxy. In addition, the platform is
not a factor: CPUs, GPUs, and/or FPGAs can all be used
as long as they are able to aggregate triangle counts across
all platforms at the end of the local computation. In general,

the best local triangle counting algorithm will be platform-
dependent as explained in Section II.

V. EVALUATION

A. Experimental Setup

We implemented the proposed graph partitioning policy
using the Customizable Streaming Partitioner (CuSP) [36]
framework. We modified CuSP to create edge proxies in addi-
tion to vertex proxies. We also modified it to treat undirected
edges as a single directed edge based on a total ordering
heuristic specified by the user. In this paper, we establish the
order among the vertices based on their degree: edges point
towards the vertex with a higher degree, and ties are broken
so the edge points to the vertex with the larger vertex ID [5].

The machine used for our evaluation is the Bridges clus-
ter [38], [39] at the Pittsburgh Supercomputing Center [40].
We used up to 64 NVIDIA Tesla P100 GPUs located on 32
distributed machines with 128GB DRAM each. Each P100
GPU has 16GB of memory. Each node in the cluster has 2
Intel Broadwell E5-2683 v4 CPUs with 16 cores per CPU. The
nodes in the cluster are connected through the Intel Omni-Path
Architecture.

We evaluated our DistTC application on the Graph500
inputs provided by the Graph Challenge; the graph properties
are shown in Table I. These inputs are relatively small in
size, so we used a single GPU for them. In addition, we used
the larger input graphs shown in Table II on up to 64 GPUs
(32 nodes on Bridges). rmat26 is a synthetic graph generated
by an RMAT generator [41]; twitter40 [42], friendster [43]
uk-2007, gsh-2015, and cluewebl2 [44], [45], [46], [47] are
web crawls. Input graphs are symmetric, have no self-loops,
and have no duplicated edges. We represent the input graphs
in memory in a compressed sparse row (CSR) format. The
tables report the number of undirected edges after dropping
duplicated edges and self-loops; each undirected edge {a,b}
is represented by two directed edges (a,b) and (b,a). The
input graph is partitioned across machines using the strategy
in Section III. We also sorted the neighbor lists of source and
destination vertices of each edge during this preprocessing



Vertices Undirected Edges # triangles IrGL (sec)  DistTC (sec)
graph500-scalel8-ef16 174,147 3,800,348 82,287,285 0.06 0.06
graph500-scale19-ef16 335,318 7,729,675 186,288,972 0.18 0.15
graph500-scale20-ef16 645,820 15,680,861 419,349,784 0.56 0.35
graph500-scale21-ef16 1,243,072 31,731,650 935,100,883 1.58 0.80
graph500-scale22-ef16 2,393,285 64,097,004  2,067,392,370 4.41 1.91

TABLE I: Graph properties and performance comparison (in seconds) of Graph500 datasets on a single GPU.

Vertices Undirected Edges # triangles
rmat26 67,108,864 1,065,788,093 43,0646,321,254
twitter40 41,652,230 1,202,513,046 34,824,916,864
friendster 65,608,366 1,806,067,135 4,173,724,142
uk2007 105,896,435 3,301,876,564 286,701,284,103
gsh-2015 988,490,691 25,690,705,118 910,140,734,636
clueweb12 978,407,686 37,372,179,311  1,995,295,290,765

TABLE II: Large graphs and their properties

Graph GPUs | Pre-Processing | Exec. Time | Total Time
16 30.16 (29.15) 5.95 36.11

rmat26 32 26.92 (25.99) 3.63 30.55
64 23.74 (22.89) 2.62 26.36

16 24.90 (24.20) 392 28.82

twitter40 32 20.81 (20.20) 2.83 23.64
64 18.73 (18.19) 2.35 21.08

16 52.13 (51.32) 2.49 54.62

friendster 32 41.80 (41.19) 1.64 43.44
64 36.13 (35.64) 1.50 37.63

16 12.16 (11.63) 8.64 20.80

uk2007 32 12.06 (11.66) 6.52 18.58
64 11.41 (11.05) 5.47 16.88

16 - - -

gsh-2015 32 | 143.43 (142.30) 16.44 159.87
64 | 143.72 (142.97) 15.25 158.97

16 - - .

clueweb12 32 - - -
64 | 162.92 (162.61) 9.49 172.41

TABLE III: Performance (in seconds) for large graphs on
multiple GPUs (Partitioning time in parentheses).

step. We compiled our implementation using gcc 6.3.0 and
cuda 9.0, and we report the results for a mean of three runs.

B. Experimental Results

In this section, we analyze the performance of distributed
triangle counting and compare it with other third-party imple-
mentations.

DistTC performance on single GPU: Table I shows the
performance of DistTC on the Graph500 inputs on a single
GPU. It also shows the runtime of IrGL-generated single-
GPU triangle counting code [5], [37] (denoted IrGL) that
was a Graph Challenge 2017 champion. On average, DistTC
achieves 1.54x speedup over /rGL. On a single GPU, we do
not partition the graph, so the difference in performance is due
to the computation phase on the GPU. IrGL uses merge-based
intersection for computing the number of triangles on an edge,
whereas DistTC employs binary search [29]. Binary search has
better locality and improved coalesced memory accesses [28],
[29], so we observe an increase in performance even on a
single GPU.

DistTC performance on multi-machine multi-GPUs: Ta-
ble IIT shows the performance on multiple GPUs on multiple

# GPUs  TriCore  DistTC
twitter4( 8 6.5 6.7
friendster 8 2.1 4.0
gsh-2015 32 253.4 159.9

TABLE IV: Performance comparison (in seconds) with Tri-
Core [29]: friendster and twitter4) compares compute time;
gsh-2015 compares end-to-end time.

hosts using the large graphs shown in Table II. We used
16, 32, and 64 GPUs. In the table, we report the following
metrics: (1) preprocessing time, which is the time taken by
CuSP to load the graph from disk, partition it, add directions
to edges, sort edges, construct the in-memory representation
of each partition, and marshal the graph from the CPU to the
GPU (in parentheses, we show the graph partitioning time,
i.e., preprocessing time excluding the time to marshal the data
from the CPU to the GPU), (2) execution time, which is the
time taken to compute the number of triangles on the GPUs
and aggregate the final result, and (3) total time, which is
end-to-end time taken to execute the application.

Most of the preprocessing time is taken up in reading the
graph from disk and partitioning it. With the increase in
the number of GPUs, the time taken compute the number
of triangles decreases since our distributed triangle counting
algorithm is free from the synchronization except for the final
aggregation. We also observe some scaling for the total time
since increasing the number of hosts allows graphs to be read
from disk faster and reduces the partitioning and marshalling
time.

We also compare the performance of our approach with that
of TriCore [28], [29], which is a multi-GPU implementation
of triangle counting and a Graph Challenge 2018 champion,
in Table IV. As their source code is not available, we use
the times reported in their paper which were collected on
Tesla P100 GPUs. For friendster and twitter40, we compare
execution time, while for gsh-2015, we compare the total end-
to-end execution time; these are the only times reported in
their paper. For gsh-2015, the number of triangles reported by
the TriCore paper seems incorrect since the number in their
paper does not match the number reported by other runs (we
ran a shared-memory Galois version of triangle counting on a
multicore machine with Intel Optane non-volatile memory and
obtained the same number of triangles as DistTC does) and
the number of edges reported in their paper does not match
the gsh-2015 specification [48].

For the small graphs with low runtime, we are competitive
with TriCore’s execution time. For the larger gsh-2015, our
implementation is faster than TriCore’s (end-to-end time) by



1.58x.

In summary, the proxy-edge based partitioning policy and
the multi-machine, multi-GPU triangle counting implemen-
tation perform well as graphs get larger in size due to the
elimination of communication except for the aggregation of
independent counts across all hosts at the end of the compu-
tation.

VI. CONCLUSION

This paper describes a high-performance distributed GPU
implementation of triangle counting using a new partitioning
scheme that duplicates edges to avoid communication during
triangle counting. Evaluation of triangle counting with this
new policy shows execution time scaling and good perfor-
mance as graphs grow in size due to the removal of commu-
nication overhead during triangle counting computation.
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