EFFICIENT DISTRIBUTION FOR DEEP LEARNING ON LARGE GRAPHS

Loc Hoang' Xuhao Chen? Hochan Lee' Roshan Dathathri® Gurbinder Gill> Keshav Pingali '

ABSTRACT

Graph neural networks (GNN) are compute intensive; thus, they are attractive for acceleration on distributed
platforms. We present DeepGalois, an efficient GNN framework targeting distributed CPUs. DeepGalois is
designed for efficient communication of high-dimensional feature vectors used in GNN. The graph partitioning
engine flexibly supports different partitioning policies and helps the user make tradeoffs among task division,
memory usage, and communication overhead, leading to fast feature learning without compromising the accuracy.
The communication engine minimizes communication overhead by exploiting partitioning invariants and commu-
nication bandwidth in modern clusters. Evaluation on a production cluster for the representative reddit and
ogbn-products datasets demonstrates that DeepGalois on 32 machines is 2.5x and 2.3 faster than that on
1 machine in average epoch time and time to accuracy, respectively. On 32 machines, DeepGalois outperforms
DistDGL by 4x and 8.9 in average epoch time and time to accuracy, respectively.

1 INTRODUCTION

Graph neural networks (GNN) (Wang et al., 2019; Hu et al.,
2020b; Huang et al., 2021) have been proposed as a pow-
erful approach for feature learning on graphs. GNNs in-
volve intensive computation on high-dimensional feature
vectors, which makes it more expensive than conventional
graph analytics algorithms. A promising way to accelerate
GNN computation is to distribute it on a cluster of CPUs
or GPUs. Many distributed GNN systems exist (Ma et al.,
2019; Zheng et al., 2020; Tripathy et al., 2020) that tackle
the challenging problem of scaling out this computation.

In this paper, we present DeepGalois, an efficient GNN
framework targeting distributed CPUs. DeepGalois is de-
signed on top of the parallel graph processing system Ga-
lois (Nguyen et al., 2013), the customizable graph parti-
tioning framework CuSP (Hoang et al., 2019), and the dis-
tributed communication substrate Gluon (Dathathri et al.,
2018). By leveraging the flexibility of the graph partitioning
engine in CuSP, DeepGalois users can orchestrate task divi-
sion, memory usage, and communication overhead to make
the best tradeoff for fast feature learning without compro-
mising accuracy. DeepGalois is the first distributed GNN
framework that supports arbitrary vertex-cut partitioning
policies; vertex-cuts are essential in scaling out to large
clusters (Gill et al., 2018). Gluon is optimized for utilizing

"The University of Texas at Austin >Massachusetts Institute
of Technology *KatanaGraph. Correspondence to: Loc Hoang
<loc@cs.utexas.edu>.

Proceedings of the First MLSys Workshop on Graph Neural Net-
works and Systems (GNNSys’21), San Jose, CA, USA, 2021. Copy-
right 2021 by the author(s).

the communication bandwidth in modern clusters, and by
leveraging Gluon, DeepGalois exploits partitioning invari-
ants, performs local aggregation of messages, and combines
messages to minimize communication overhead. DeepGa-
lois adds additional support for vector datatypes in Gluon
to support efficient communication for high-dimensional
feature vectors.

We evaluate DeepGalois using a wide range of representa-
tive graphs on distributed CPUs. Experimental results show
that DeepGalois on 32 machines is 2.5x and 2.3x faster
than that on 1 machine in average epoch time and time to
accuracy, respectively. On 32 machines, DeepGalois outper-
forms DistDGL by 4x and 8.9x in average epoch time and
time to accuracy, respectively.

This work makes the following contributions:

* We present DeepGalois, a scalable GNN framework tar-
geting distributed CPU clusters.

* We provide system support for efficient feature vector
communication and flexible graph partitioning to improve
scalability.

» Experimental results on up to 32 CPU machines demon-
strate that DeepGalois scales well and outperforms the
state-of-the-art.

2 BACKGROUND
2.1 Computation Patterns in Graph Neural Networks

Given an input graph G(V, E) with vertices V' and edges
E and input features h? for each v € V, a k-layer GNN
learns an output feature vector h* for each vertex v that can

Efficient Distribution for Deep Learning

be used for downstream tasks. In the i-th layer (0 < ¢ < k),
each vertex aggregates feature vectors from its neighbors
and updates itself with the aggregated neighbor information
and its own feature vector h! to get its feature for layer i + 1,
hi*1. The computation for vertex v in the [-th layer follows:

mltl = aggregate({h),|u € N'(v)}) Q)
RIF! = update(mitt, hl) 2

N (v) is the set of v’s one-hop neighbors. Both functions
can use trainable parameters that are learned during GNN
training: for example, the update function typically has
an associated set of weights that are used to transform the
aggregated feature vector using a matrix multiply operation.

Many GNN models have been proposed, including graph
convolutional networks (GCN) (Kipf & Welling, 2016),
Graph Isomorphism Networks (GIN) (Xu et al., 2019),
GraphSAGE (Hamilton et al., 2017), and graph attention
networks (GAT) (Velickovi¢ et al., 2018). They differ in
how they define the GNN’s aggregate and update functions.

2.2 Existing Graph Neural Network Work

Many techniques exist to support scalable GNN computing.
FastGCN (Chen et al., 2018) and GraphSAGE (Hamilton
et al., 2017) proposed mini-batching and neighbor sampling
to reduce computation and memory footprints. LGCL (Gao
etal., 2018) and GraphSAINT (Zeng et al., 2019; Zeng et al.,
2020) proposed subgraph sampling which trains GNNs via
random-walked sampled subgraphs. GPNN (Liao et al.,
2018) adopts two-level (local-global) propagation approach
to handle extremely large graphs. Other techniques remove
redundant aggregation (Zeng & Prasanna, 2020; Jia et al.,
2020b) from common neighbors.

These techniques can be applied on top of distributed
CPU/GPU GNN implementations to further accelerate train-
ing. Distributed CPU systems include AliGraph (Yang,
2019), Euler (Eul, 2020), DistDGL (Zheng et al., 2020), and
AGL (Zhang et al., 2020), and multi-GPU systems include
Roc (Jia et al., 2020a), NeuGraph (Ma et al., 2019), and
CAGNET (Tripathy et al., 2020). Each system has varying
methods of distribution of the GNN computation.

2.3 Distributed Vertex Programs

In graph analytics applications, a computation rule called
an operator (Pingali et al., 2011) is applied repeatedly to
a vertex v and its label until some termination condition is
reached. The operator uses v’s label as well as the labels of
v’s neighborhood, which the operator can define arbitrarily
(e.g., beyond single-hop neighbors). A vertex program is an
application where the neighborhood of an operator applied
to vertex v consists only of v’s immediate neighbors. Many

distributed graph analytics systems have been proposed to
efficiently distribute the computation of vertex programs
across machines such as D-Galois (Dathathri et al., 2018),
Lux (Jia et al., 2017), and Gemini (Zhu et al., 2016). In
particular, D-Galois is composed of two components that
can be reused in any system to distribute vertex programs:
the Gluon communication substrate which optimizes com-
munication across machines using structural and temporal
invariants of partitioning and the Customizable Streaming
Partitioner (CuSP) (Hoang et al., 2019), a library which
partitions the graph.

We observe that GNN computation is a vertex program:
aggregation followed by update is an operator that reads fea-
tures (i.e., labels) from immediate neighbors and applies the
update function update its own label. The termination con-
dition is the number of layers in the network: this operator
will be applied & times for a k-layer network.

3 DEEPGALOIS
3.1 Components of DeepGalois

Graph Computation: For computation on each machine,
DeepGalois uses Galois (Nguyen et al., 2013) which is the
state-of-the-art shared memory framework that provides
parallel constructs and efficient abstract data structures for
graph computations. For matrix multiplications required
in GNN computations, DeepGalois uses the BLAS library.
DeepGalois’s modular design allows users to use any such
library of their choice.

Graph Partitioning: DeepGalois uses a customizable stream-
ing graph partitioner called CuSP (Hoang et al., 2019) that
provides a simple API to design custom partitioning policies
for graphs. CuSP allows the flexibility to customize domain
specific partitioning policies for GNN applications; this
is especially important for efficient communication (Sec-
tion 3.3). CuSP provides many graph partitioning policies
including edge-cuts, vertex-cuts, and hybrid-cuts, so users
of DeepGalois can pick any of these policies for their spe-
cific GNN, dataset, and cluster (Gill et al., 2018).

Synchronization: Finally, for synchronization of vertex
labels (aggregated features in the case of GNNs) among
machines in the distributed setting, DeepGalois leverages
Gluon (Dathathri et al., 2018) which is a partition-aware
communication substrate for vertex programs.

The combination of these three components has been shown
useful in the past in D-Galois (Dathathri et al., 2018), a state-
of-the-art distributed graph analytics framework; DeepGa-
lois applies it to the machine learning domain in this work
which brings its own set of design challenges.

Efficient Distribution for Deep Learning

Destination
A BEF 1 CDGHUJ

‘GY H

O :Master

(a) Original graph.

',= :Mirror

Source

OO — Tm

(b) Outgoing Edge-Cut (OEC) partitions. (c) Cartesian Vertex-Cut (CVC) partitions.

Figure 1. An example of partitioning a graph for four hosts using two different policies. (Hoang et al., 2019)

3.2 Partitioning and Data Placement

Graph Partitioning In DeepGalois, the edges of the
graph are uniquely partitioned among all machines, and
proxies for the endpoints of the edges are created on each
machine. A vertex v’s proxy on a machine has a cached
copy of v’s feature vector during GNN computation, and
periodic synchronization occurs as necessary to synchro-
nize the proxies of the same vertex on different machines
(discussed further in Section 3.3). One of the proxies for
a given v is designated the master proxy: it is responsible
for determining the canonical feature vector with contribu-
tions from v’s mirror proxies (i.e., all other proxies) and
synchronizing this canonical value among all proxies.

Abstractly, all partitioning policies used by DeepGalois can
be expressed with the definition of two heuristics (Hoang
et al., 2019): (1) assignment of master proxies and (2) as-
signment of edges to machines. For example, a simple way
to assign master proxies is to split them evenly among all
machines in a blocked fashion. An outgoing edge-cut (OEC)
would assign edge (u, v) to the machine that has «’s master
proxy: this results in a partition where the machine with the
master proxy ends up with all its outgoing edges. Another
example of a more complex policy is a 2D Cartesian vertex
cut (CVC) (Boman et al., 2013) which distributes edges
according to a 2D block-cyclic distribution of the blocks of
the adjacency matrix representing the edges of the graph.
Fig. 1 illustrates OEC and CVC. The way the graph is par-
titioned affects computational load balance as well as the
communication patterns during synchronization.

DeepGalois is the first distributed GNN implementation to
allow for arbitrary partitioning of the graph via CuSP: this
allows us to use partitions that scale better than the edge-
cuts used in most distributed GNN systems (e.g., DistDGL)
as we illustrate in our experimental results.

Model Placement As mentioned in Section 2.1, the aggre-
gation and update functions for a GNN may have trainable

parameters. We refer to the set of these parameters as the
model that is trained during GNN execution. DeepGalois,
replicates parts of the model that are required for carrying
out the computation on each machine. For example, in
GCN’s update function, a vertex’s aggregated feature vector
is multiplied by a weight matrix to transform it. Since a
vector-matrix multiply requires the entire matrix, the entire
weight matrix will be replicated on all machines for each
layer. The size of these parameters is small compared to the
graph size and feature vectors, so full replication does not
add much overhead. Keeping the model consistent across
all machines is done by synchronizing the model gradients
across the machines during the backward pass of training.

3.3 Synchronization of Data

Aggregation After the graph is partitioned among ma-
chines, each partition is a self-contained subgraph with local
proxies. The local application of the aggregation function
on a given machine performs local aggregation for vertices
in the partition on that machine. This does not involve any
communication due to the cached copies in the local proxies.
In other distributed GNN frameworks like DistDGL (Zheng
et al., 2020), vertex features are queried from a server if they
are not present locally, so server communication may be
required to access vertex features. DeepGalois reduces the
communication overhead by performing local aggregation
without communication.

To get the full aggregated result after local aggregation, a
logical all-reduce operation is required in which all partial
values on proxies of a given vertex v are synchronized. This
requires that the aggregation operation must be commutative
and associative; most GNN aggregation functions satisfy
this property. Synchronization using Gluon is a logical re-
duction on the master proxy to produce the final canonical
value by reducing the contributions from mirror proxies fol-
lowed by a logical broadcast of the canonical value from
the master to mirror proxies. As they may be millions of
vertices whose partial values may need to be synchronized,

Efficient Distribution for Deep Learning

DeepGalois uses Gluon to combine partial values (or mes-
sages) for different vertices into a single message per host in
each logical reduction or broadcast phases. Such message
aggregation reduces the communication overhead by better
utilizing the communication bandwidth (Dang et al., 2018).

It is important to note that the partitioning policy plays a
key role in determining the communication volume during
synchronization. Reduction will occur from machine a to
machine b if @ has a proxy for a vertex v that host b owns
the master proxy of, and a broadcast occurs from b to all
machines that have a proxy for v. It is possible for a to need
to broadcast to all machines in the system if a proxy exists
for a vertex it owns on every machine: this does not scale
well as the number of machines increases. Therefore, to
avoid this problem, it is useful to use a 2D partitioning policy
such as CVC which is more structured: due to the way edges
are placed in CVC, a machine’s communication partners
are strictly limited to only a subset of hosts, which allows
communication to scale for a higher number of hosts. These
communication optimizations based on partitioning policies
have been detailed and studied extensively (Dathathri et al.,
2018; Gill et al., 2018), and we leverage these findings here
for efficient GNN synchronization.

Model Gradients During the backward pass of GNN
training, each machine calculates only the gradient con-
tributions of its master proxies. A simple sum all-reduce of
all gradients among all machines (as all gradients are repli-
cated on all machines) reconstructs the same gradients that
would have been derived on a single machine. This ensures
that distributed execution does not degrade accuracy.

4 EVALUATION
4.1 Experimental Setup

We use two platforms for evaluation. The first is a machine
with Intel Xeon Gold 5120 2.2 GHz CPUs with 56 cores on
4 sockets and 187GB of DRAM. We refer to this machine
as Ghostwheel (GW). The second is the Stampede2 super-
computer (Stanzione et al., 2017) at the Texas Advanced
Computing Center (TAC); each machine has 48 Intel Sky-
lake cores on 2 sockets and 192GB of DRAM. The machines
are connected via a 100 Gb/s Intel Omni-Path network. We
run on up to 32 of these machines.

We evaluate three GNN systems. Deep Graph Library
(DGL) (Wang et al., 2019) is a library that provides many
GNN models as well as data structures to easily build
new models. DistDGL (Zheng et al., 2020) is the dis-
tributed variant of DGL.: it has a subset of the models in
DGL. DeepGalois is the system presented in this paper.
For our experiments, we evaluate the Graph Convolutional
Network model (Kipf & Welling, 2016) and GraphSAGE

Dataset

reddit ogbn-products ogbn-papersl100M

Vertices 232K 2.4M 111.1M
Edges 11.6M 123.7M 3.2B
d 50 51 29
Feature 602 100 128
Classes 41 47 172

Train / Val / Test | 0.66/0.10/0.24 0.08/0.02/0.90 0.78/0.08/0.14

Table 1. Input graphs. d is the average degree.

DGL | DeepGalois
reddit 0.623 0.750
GCN ogbn-products | 3.525 1.709
reddit 5.200 1.344
SAGE ogbn-products | 6.290 2.788

Table 2. Average epoch time (sec) on ghostwheel based on 200
epoch run (H=16, L=2).

model (Hamilton et al., 2017) of GNNs on these systems
(DistDGL does not have GCN). We evaluate DGL only
on Ghostwheel, and we evaluate DistDGL only on Stam-
pede2. We perform vertex classification for these datasets,
and accuracy is for single-label vertex classification.

Table 1 shows the input graphs we use for evaluation.
reddit is a representative graph used in previous works
(Jia et al., 2020a; Wang et al., 2019), and the other two
datasets are from Open Graph Benchmark (OGB) (Hu
et al., 2020a). DistDGL supports sampling, which sig-
nificantly changes computation for large graphs such as
ogbn-papers100M, so we do not include DistDGL re-
sults for it here; we use this graph only to show scaling
for DeepGalois. We plan to add support for sampling in
DeepGalois in the future. We use a 2-layer GNN with a
hidden feature dimension size of 16. Feature dropout and
mini-batching are disabled; note that DistDGL is optimized
for mini-batching, but it is disabled in order to examine
full-batch behavior compared to DeepGalois. We average
runtimes over 200 epochs except for ogbn—-papers100M
where we only run for 5 epochs. More experimental setup
details are in the appendix.

4.2 Single Machine: DGL and DeepGalois

To show that DeepGalois matches a baseline for perfor-
mance, we compare runtime with DGL on single-machine.
Table 2 shows average epoch time of running 200 epochs.
DeepGalois is competitive with DGL, showing that it can
match the performance of existing GNN implementations.

Note that DeepGalois is much faster than DGL for Graph-
SAGE. This is due to an important optimization which or-
ders aggregation and update depending on the dimensions
of input embedding D; and output embedding D,. When
D; > D,, update is performed before aggregation. Other-
wise, aggregation is performed before update. In this way,

Efficient Distribution for Deep Learning

3 DistDGL

I DeepGalois

Epoch time (sec)
o = N w B

reddit

WLLLLLE

T

ogbn-products

Figure 2. GraphSAGE epoch time in DistDGL and DeepGalois (mini-batching disabled in DistDGL).

Bl other W computation

)

0_
reddit-1 reddit-32 product-1 product-32
DistDGL Epoch Time Breakdown

=N N W
o u o wu o

o
n

Epoch Time Distribution (sec)

(a) DistDGL: “other” includes sampling and data copy time.

I other W computation

NoWw
n o

N
=)

=
o

o
U

Epoch Time Distribution (sec)
=
w

0
reddit-1 reddit-32
DeepGalois Epoch Time Breakdown

product-1 product-32

(b) DeepGalois: “other” includes the communication time.

Figure 3. Epoch time breakdown of GraphSAGE on 1- and 32-machines. Note that “computation” involves full graph in DeepGalois since

DeepGalois does not do neighbor sampling.

aggregation (which is more expensive than update) is always
performed on the shorter embeddings. In DGL, this opti-
mization is applied to GCN but not to GraphSAGE because
GraphSAGE must support multiple different aggregators,
some of which (e.g., LSTM) prevent this optimization from
being applied. This can be fixed in DGL by checking the
constraint compile time to see if this optimization is ap-
plicable. For example, with a mean aggregator, it can be
applied.

4.3 Distributed Execution: DistDGL vs. DeepGalois

We compare DeepGalois with the state-of-the-art distributed
GNN system, DistDGL. Unless specified otherwise, we
report results of DeepGalois using CVC partitioning policy,
which performs better than OEC.

4.3.1 Performance Overview

Fig. 2 compares average training epoch time of DistDGL
and DeepGalois on 1-machine to 32-machine for Graph-

SAGE. We observe that for reddit and products,
DeepGalois is constantly faster than full-batch DistDGL
even though DistDGL does neighbor sampling to reduce
computation, likely due to DeepGalois avoiding the data
copying over the network done by DistDGL. Another ob-
servation is that DistDGL does not scale well, particularly
for reddit. With 32-machine, DistDGL is 2.6 x slower
than it is on single-machine, which defeats the purpose of
using a distributed cluster. This is also likely due to the sig-
nificant data copying overhead, which would be non-trivial
especially medium-sized graphs like reddit where the re-
duction of computation time can not amortize the communi-
cation overhead. In comparison, DeepGalois achieves 2.3 x
speedup with 32-machine over 1-machine for reddit.

4.3.2 Performance Breakdown

Fig. 3a and Fig. 3b compares average epoch time distribu-
tion of DistDGL and DeepGalois on different number of
machines. We observe that there is a non-trivial overhead
in DistDGL to sample and copy the data. For DeepGa-

Efficient Distribution for Deep Learning

B other B computation

150
125
100

75
50

25

Epoch Time Distribution (sec)

0
OEC-8 CVC-8 OEC-16CVC-160EC-32CVC-32

Figure 4. OEC vs. CVC partitioning policy in DeepGalois using
ogbn-papers100M on 8-, 16-, 32-machines.

0.8
0.71 AAAAAAA.A.AAAAA
RS .-l"..
5. 0.67 x a o
o x4
O 0.5 .
3 "
XA
O 0.4
< u
0 0.3
] u
= 0.21 DistDGL 1-machine
: m DistDGL 32-machine
011 = A DeepGalois 1-machine
X X DeepGalois 32-machine
L : : . : . .
0.0 0 100 200 300 400 500 600

Figure 5. Speed of convergence for DeepGalois and DistDGL on 1-
machine and 32-machine using product s. Each two consecutive
points in the figure cover 10 epochs.

lois, although it communicates data during each epoch, the
communication time in DeepGalois is much less than the
data copy time in DistDGL. Although there is some com-
munication overhead in DeepGalois on 32 machines, since
the computation time is significantly reduced, we still see
substantial speedup over single-machine.

Fig. 4 illustrates the time distribution of DeepGalois on the
large graph papers-100M with OEC and CVC. Due to
the limited memory capacity on each machine, we can only
run it with at least 8 machines. We observe that DeepGa-
lois scales well to 32 machines with CVC. Computation
time is reduced due to additional compute power. Notice
that the communication time also decreases as number of
machines increases: even though the total amount of com-
munication increases, communication is overlapped with
more machines. OEC has higher computation time than
CVC due to load imbalance since OEC assigns all edges of

a vertex to the same machine: this may not balance the work-
load well due to the high-degree vertices. Overall, CVC
executes for less time, which is why we choose to use it in
practice.

Fig. 4 shows that the graph partitioning policy matters: the
flexibility provided by CuSP is beneficial for the training
speed. It is more important for GNN applications than it is
for graph analytics applications to explore the best graph
partitioning policy, as there is much more computation and
communication involved in GNN due to vector in GNN
instead of scalar in graph analytics. Therefore, carefully
balancing workload and reducing communication overhead
is critical to the training speed.

4.4 Accuracy Convergence Speed

Fig. 5 shows how the test accuracy changes over time for
DistDGL and DeepGalois. We notice that with more ma-
chines, both DistDGL and DeepGalois converge faster than
single-machine due to reduced epoch time. We observe
that DeepGalois converges faster than DistDGL. There are
two reasons. First, with the same number of epochs, Deep-
Galois’s accuracy increases faster, likely because DistDGL
uses neighbor sampling but DeepGalois does not. Second,
since DeepGalois runs faster than DistDGL, the convergence
time is reduced.

5 CONCLUSION

This paper presents DeepGalois, a distributed GNN system
built using proven distributed graph analytics systems and
techniques applied to GNNs. DeepGalois scales as the num-
ber of machines grows due to efficient communication that
leverages invariants of partitioning policies, and it outper-
forms DistDGL, a state-of-the-art distributed GNN system.
We are in the process of adding GPU support to DeepGalois,
and we also plan to add additional layer types such as GAT
and techniques such as graph sampling.

ACKNOWLEDGEMENTS

This research was supported by the NSF grants
1406355,1618425, 1705092, and 1725322, DARPA con-
tracts FA8750-16-2-0004 and FA8650-15-C-7563, and
XSEDE grant ACI-1548562 through allocation TG-CIE-
170005.

REFERENCES

Texas Advanced Computing Center (TACC) at the Uni-
versity of Texas at Austin. URL http://www.tacc.
utexas.edu.

Euler GitHub, 2020. URL https://github.com/

http://www.tacc.utexas.edu
http://www.tacc.utexas.edu
https://github.com/alibaba/euler
https://github.com/alibaba/euler

Efficient Distribution for Deep Learning

alibaba/euler.

Boman, E. G., Devine, K. D., and Rajamanickam, S. Scal-
able matrix computations on large scale-free graphs using
2D graph partitioning. In Proceedings of the International
Conference on High Performance Computing, Network-
ing, Storage and Analysis, pp. 1-12, 2013.

Chen, J., Ma, T., and Xiao, C. FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling.
In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rytstxWAW.

Dang, H.-V., Dathathri, R., Gill, G., Brooks, A., Dryden,
N., Lenharth, A., Hoang, L., Pingali, K., and Snir, M.
A Lightweight Communication Runtime for Distributed
Graph Analytics. In IPDPS, 2018.

Dathathri, R., Gill, G., Hoang, L., Dang, H.-V., Brooks,
A., Dryden, N., Snir, M., and Pingali, K. Gluon: A
Communication-optimizing Substrate for Distributed Het-
erogeneous Graph Analytics. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, pp. 752-768,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-
5698-5. doi: 10.1145/3192366.3192404. URL http:
//doi.acm.org/10.1145/3192366.3192404.

Gao, H., Wang, Z., and Ji, S. Large-Scale Learnable
Graph Convolutional Networks. In Proceedings of the
24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD 18, pp. 1416-
1424, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450355520. doi: 10.
1145/3219819.3219947. URL https://doi.org/
10.1145/3219819.3219947.

Gill, G., Dathathri, R., Hoang, L., and Pingali, K. A Study
of Partitioning Policies for Graph Analytics on Large-
Scale Distributed Platforms. Proc. VLDB Endow., 12(4):
321-334, December 2018. ISSN 2150-8097. doi: 10.
14778/3297753.3297754. URL https://doi.org/
10.14778/3297753.3297754.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive Rep-
resentation Learning on Large Graphs. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS *17, pp. 1025-1035, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Hoang, L., Dathathri, R., Gill, G., and Pingali, K. CuSP: A
Customizable Streaming Edge Partitioner for Distributed
Graph Analytics. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 439—
450, 2019.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open Graph Benchmark:
Datasets for Machine Learning on Graphs. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 22118-22133. Curran Associates,
Inc., 2020a. URL https://proceedings.
neurips.cc/paper/2020/file/
fb60d411a5cbb72b2e7d3527cfc84fd0-Paper.
pdf.

Hu, Y, Ye, Z., Wang, M., Yu, J., Zheng, D., Li, M., Zhang,
Z.,Zhang, Z., and Wang, Y. FeatGraph: A Flexible and
Efficient Backend for Graph Neural Network Systems. In
Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
SC *20. IEEE Press, 2020b. ISBN 9781728199986.

Huang, K., Zhai, J., Zheng, Z., Yi, Y., and Shen, X. Under-
standing and Bridging the Gaps in Current GNN Per-
formance Optimizations. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP 21, pp. 119-132,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450382946. doi: 10.1145/
3437801.3441585. URL https://doi.org/10.
1145/3437801.3441585.

Jia, Z., Kwon, Y., Shipman, G., McCormick, P., Erez,
M., and Aiken, A. A Distributed Multi-GPU System
for Fast Graph Processing. Proc. VLDB Endow., 11(3):
297-310, November 2017. ISSN 2150-8097. doi: 10.
14778/3157794.3157799. URL https://doi.org/
10.14778/3157794.3157799.

Jia, Z., Lin, S., Gao, M., Zaharia, M., and Aiken, A. Improv-
ing the Accuracy, Scalability, and Performance of Graph
Neural Networks with Roc. In Proceedings of the 3rd
Conference on Machine Learning and Systems (MLSys),
March 2020a.

Jia, Z., Lin, S., Ying, R., You, J., Leskovec, J., and
Aiken, A. Redundancy-Free Computation for Graph
Neural Networks. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD 20, pp. 997-1005, New
York, NY, USA, 2020b. Association for Computing
Machinery. ISBN 9781450379984. doi: 10.1145/
3394486.3403142. URL https://doi.org/10.
1145/3394486.3403142.

Kipf, T. and Welling, M. Semi-Supervised Classifica-
tion with Graph Convolutional Networks. In Interna-

tional Conference on Learning Representations, ICLR
’16, 2016.

https://github.com/alibaba/euler
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
http://doi.acm.org/10.1145/3192366.3192404
http://doi.acm.org/10.1145/3192366.3192404
https://doi.org/10.1145/3219819.3219947
https://doi.org/10.1145/3219819.3219947
https://doi.org/10.14778/3297753.3297754
https://doi.org/10.14778/3297753.3297754
https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://doi.org/10.1145/3437801.3441585
https://doi.org/10.1145/3437801.3441585
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.1145/3394486.3403142
https://doi.org/10.1145/3394486.3403142

Efficient Distribution for Deep Learning

Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A., Urtasun,
R., and Zemel, R. S. Graph Partition Neural Networks
for Semi-Supervised Classification, 2018. URL https:
//openreview.net/forum?id=rk4Fz2e0b.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L.,
and Dai, Y. Neugraph: Parallel Deep Neural Network
Computation on Large Graphs. In Proceedings of the
2019 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’19, pp. 443-457, USA, 2019.
USENIX Association. ISBN 9781939133038.

Nguyen, D., Lenharth, A., and Pingali, K. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of
the 24th ACM Symposium on Operating Systems Princi-
ples (SOSP), SOSP *13, pp. 456471, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2388-8. doi:
10.1145/2517349.2522739. URL http://doi.acm.
org/10.1145/2517349.25227309.

Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M.,
Hassaan, M. A., Kaleem, R., Lee, T.-H., Lenharth, A.,
Manevich, R., Méndez-Lojo, M., Prountzos, D., and Sui,
X. The Tao of Parallelism in Algorithms. In Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI *11, pp. 12—
25, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0663-8. doi: 10.1145/1993498.1993501. URL http:
//doi.acm.org/10.1145/1993498.1993501.

Stanzione, D., Barth, B., Gaffney, N., Gaither, K., Hempel,
C., Minyard, T., Mehringer, S., Wernert, E., Tufo, H.,
Panda, D., and Teller, P. Stampede 2: The Evolu-
tion of an XSEDE Supercomputer. In Proceedings
of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Im-
pact, PEARC17, New York, NY, USA, 2017. Associ-
ation for Computing Machinery. ISBN 9781450352727.
doi: 10.1145/3093338.3093385. URL https://doi.
0rg/10.1145/3093338.3093385.

Tripathy, A., Yelick, K., and Bulug, A. Reducing Communi-
cation in Graph Neural Network Training. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC *20.
IEEE Press, 2020. ISBN 9781728199986.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph Attention Networks. In
International Conference on Learning Representations,
ICLR ’18,2018. URL https://openreview.net/
forum?id=rJXMpikCZ.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li, M.,
Zhou, J., Huang, Q., Ma, C., Huang, Z., Guo, Q., Zhang,
H., Lin, H., Zhao, J., Li, J., Smola, A. J., and Zhang,
Z. Deep Graph Library: Towards Efficient and Scalable

Deep Learning on Graphs. In International Conference
on Learning Representations, ICLR 19, 2019.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How Pow-
erful are Graph Neural Networks? In International
Conference on Learning Representations, ICLR ’19,
2019. URL https://openreview.net/forum?
id=ryGs6iA5Km.

Yang, H. AliGraph: A Comprehensive Graph Neural
Network Platform. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD 19, pp. 3165-3166,
New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450362016. doi: 10.1145/
3292500.3340404. URL https://doi.org/10.
1145/3292500.3340404.

Zeng, H. and Prasanna, V. GraphACT: Accelerating GCN
Training on CPU-FPGA Heterogeneous Platforms. In
Proceedings of the 2020 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA
’20, pp. 255265, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450370998.
doi: 10.1145/3373087.3375312. URL https://doi.
org/10.1145/3373087.3375312.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Accurate, Efficient and Scalable Graph
Embedding. In 2019 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 462471,
May 2019. doi: 10.1109/IPDPS.2019.00056.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. GraphSAINT: Graph Sampling Based
Inductive Learning Method. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=BJe8pkHFwS.

Zhang, D., Huang, X., Liu, Z., Zhou, J., Hu, Z., Song,
X., Ge, Z., Wang, L., Zhang, Z., and Qi, Y. AGL:
A Scalable System for Industrial-Purpose Graph Ma-
chine Learning. Proc. VLDB Endow., 13(12):3125-3137,
Aug 2020. ISSN 2150-8097. doi: 10.14778/3415478.
3415539. URL https://doi.org/10.14778/
3415478.34155309.

Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X.,
Gan, Q., Zhang, Z., and Karypis, G. DistDGL: Dis-
tributed Graph Neural Network Training for Billion-Scale
Graphs, 2020.

Zhu, X., Chen, W., Zheng, W., and Ma, X. Gemini:
A Computation-centric Distributed Graph Processing
System. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implemen-
tation, OSDI’16, pp. 301-316, Berkeley, CA, USA,

https://openreview.net/forum?id=rk4Fz2e0b
https://openreview.net/forum?id=rk4Fz2e0b
http://doi.acm.org/10.1145/2517349.2522739
http://doi.acm.org/10.1145/2517349.2522739
http://doi.acm.org/10.1145/1993498.1993501
http://doi.acm.org/10.1145/1993498.1993501
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1145/3093338.3093385
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3292500.3340404
https://doi.org/10.1145/3292500.3340404
https://doi.org/10.1145/3373087.3375312
https://doi.org/10.1145/3373087.3375312
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.14778/3415478.3415539
https://doi.org/10.14778/3415478.3415539

Efficient Distribution for Deep Learning

2016. USENIX Association. ISBN 978-1-931971-33-
1. URL http://dl.acm.org/citation.cfm?
1d=3026877.3026901.

A MORE EXPERIMENTAL SETUP DETAILS

This has been updated from the original version present on
the GNNSys21 webpage: learning rates have been corrected
and DGL details have been added.

The test accuracy used to determine the time-to-accuracy
speedups in the abstract and intro was 93% for reddit and
60% for ogbn-products.

During partitioning for DeepGalois, we modified CuSP to
balance training nodes among machines for reddit and ogbn-
products, which had well-defined ranges for training nodes.

We disabled all minibatching in DistDGL in order to do a
fair comparison with DeepGalois which does not have mini-
batching. DistDGL has neighborhood sampling (we could
not disable this easily) and inductive training. DeepGalois
does not do sampling and does transductive training. The
Adam optimizer is used in all three systems. DistDGL and
DeepGalois use betal 0.9, beta2 0.999, and epsilon le — 8
for Adam. DeepGalois uses 0.01 for learning rate while
DistDGL uses 0.003.

We used/modified code as necessary to do full batch training
with DGL. Weight decay is disabled for DGL’s AdamW, and
parameters for AdamW are default other than learning rate.
Learning rate of 0.01 is used for DGL except for reddit
with GCN which uses a learning rate of 0.02. DGL’s GCN
by default has a linear layer after GCN layers. Dropout is
disabled.

The GitHub commit used for DistDGL runs is
€22087aa36f7f6b331fb3edbf1e5b14850c924e3 (March 25,
2021) with DGL 0.6. For DistDGL, we used the following
hyper-parameters. Number of trainers was set to 1 (setting it
higher seemed to slow down execution). Number of servers
was set to 2 (we did not notice much difference varying
this number). Minibatching was disabled as mentioned
above by setting the batch size to a very high number. The
profiler was disabled. The number of workers (equivalent
to number of samplers) parameter was set to 0: this was to
avoid a bug in which evaluation of the validation and testing
set would not work. OMP_NUM_THREADS was set to 48
(the number of threads on the cluster it was run on). We
used the balance_train and balance_edges arguments to the
graph partitioner, and the number of partitions created was
equal to the number of machines used.

http://dl.acm.org/citation.cfm?id=3026877.3026901
http://dl.acm.org/citation.cfm?id=3026877.3026901

