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Abstract—Graph analytics systems must analyze graphs with
billions of vertices and edges which require several terabytes of
storage. Distributed-memory clusters are often used for analyzing
such large graphs since the main memory of a single machine is
usually restricted to a few hundreds of gigabytes. This requires
partitioning the graph among the machines in the cluster. Existing
graph analytics systems usually come with a built-in partitioner
that incorporates a particular partitioning policy, but the best
partitioning policy is dependent on the algorithm, input graph,
and platform. Therefore, built-in partitioners are not sufficiently
flexible. Stand-alone graph partitioners are available, but they
too implement only a small number of partitioning policies.

This paper presents CuSP, a fast streaming edge partitioning
framework which permits users to specify the desired partitioning
policy at a high level of abstraction and generates high-quality
graph partitions fast. For example, it can partition wdc12, the
largest publicly available web-crawl graph, with 4 billion vertices
and 129 billion edges, in under 2 minutes for clusters with 128
machines. Our experiments show that it can produce quality
partitions 6× faster on average than the state-of-the-art stand-
alone partitioner in the literature while supporting a wider range
of partitioning policies.

Index Terms—Graph analytics, graph partitioning, streaming
partitioners, distributed-memory computing.

I. INTRODUCTION

In-memory analysis of very large graphs with billions of
vertices and edges is usually performed on distributed-memory
clusters because they have the required compute power and
memory [1], [2], [3], [4], [5], [6]. This requires partitioning
the graphs between the hosts of the cluster.

Graph partitioners can be evaluated along three dimensions.

• Generality: Does the partitioner support a variety of
partitioning policies or is it restricted to one or a small
number of baked-in policies? This is important because
there is no one best partitioning policy that is optimal for
all algorithms, input graphs, and platforms [7].

• Speed: How fast can it partition graphs?
• Quality: How good are the generated partitions for the al-

gorithms, inputs, and platforms of interest? For example,
even if we restrict attention to edge-cuts, there are many
edge-cut partitions for a given graph, and some will be
better than others for a given algorithm or platform.
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Most existing graph analytics systems come with their
own partitioning routines that implement a single partitioning
policy and are tightly integrated with the system, but this is
not flexible enough [2], [3], [4], [5], [6]. Stand-alone graph
partitioners, which partition graphs offline for later use in an
application, are available [8], [9], [10], but they are restricted
to a small number of partitioning strategies; for example,
Metis [8], XtraPulp [9], and Spinner [10] are restricted to edge-
cuts. Additionally, even if a graph analytics system supports
multiple policies such as D-Galois[1], partitioning time has
been shown to take almost as much or even longer than execu-
tion of a graph analytics application itself [1], [4], [5], [6]: for
example, D-Galois and Gemini [6] take roughly 400 seconds
and 1250 seconds, respectively, to partition clueweb12, a large
web-crawl, on 256 machines, and running pagerank on the
partitioned graph takes no longer than 300 seconds [1]. This
demonstrates the need for faster partitioners even in existing
graph processing systems.

Ideally, a graph partitioner would be (i) customizable by
the application programmer and (ii) fast so that the time to
partition graphs will not be much more than the time it takes
to read the graphs in from disk while (iii) producing partitions
competitive to those that existing systems produce.

This paper presents CuSP, a fast, customizable, streaming
edge partitioning framework that aspires to this ideal. It has
been carefully designed to exploit both distributed-memory
and shared-memory parallelism to achieve its speed objectives.

This paper makes the following contributions:
• We present an abstract framework for graph partitioning

that can express the streaming partitioning strategies used
in the literature.

• We present CuSP, an implementation of this abstract
partitioning framework, that can be easily customized by
application programmers. CuSP utilizes a large amount
of parallelism for fast partitioning.

• Evaluation of CuSP in comparison with XtraPulp [9], the
state-of-the-art offline graph partitioner, shows that it can
produce partitions more rapidly than XtraPulp can, and
with matching or higher quality than XtraPulp can. For
example, the partitioning time of a policy called Cartesian
Vertex-Cut (CVC) [11], [1] in CuSP is 11.9× faster
than XtraPulp on average. Furthermore, the application
execution time with CVC partitions is faster than with
XtraPulp partitions by 1.9× on average.



The rest of the paper is organized as follows. Section II
presents background in graph partitioning. Section III presents
the abstract framework for efficient streaming graph partition-
ing. Section IV presents the design of CuSP, an implementa-
tion of the abstract framework, and the various optimizations it
uses to utilize parallelism. Section V presents an experimental
evaluation of CuSP’s partitioning time and partitioning quality
on a large production cluster using D-Galois [1], the state-of-
the-art distributed graph analytics system. Section VI discusses
related partitioning work and Section VII concludes the paper.

II. BACKGROUND TO PARTITIONING

This section gives an overview of the graph partitioning
approaches considered in the literature. Given k hosts and
a graph G = (V,E) where V is the set of vertices and
E is the set of edges, G must be divided into k subgraphs
{Gi = (Vi, Ei)|1 ≤ i ≤ k}, such that V1 ∪ V2 ∪ ... ∪ Vk = V
and E1 ∪ E2 ∪ ... ∪ Ek = E.

One way to generate the subgraphs Gi is the following: (i)
partition the edges of G into k subsets and (ii) add vertices
to each partition for the endpoints of its edges. Therefore,
if the edges connected to a given vertex v in graph G are
partitioned among several subgraphs, each subgraph will have
a vertex corresponding to v. We term these proxy vertices for
the original vertex v. One of these proxy vertices is designated
as the master vertex for this collection of proxy vertices, and
the others are designates as mirror vertices. Figure 1b shows a
partitioning of the graph in Figure 1a. During the computation,
the master vertex holds the canonical value of the vertex, and it
communicates this value to mirrors when needed. The average
number of proxy vertices created for a given vertex in the
original graph is called the average replication factor.

We observe that a graph partition is completely defined by
(i) the assignment of edges to subgraphs, and (ii) the choice
of master vertices.

It is useful to classify partitioning algorithms along two
dimensions: (i) structural invariants of the subgraphs they
create and (ii) how the subgraphs are created. Table I lists
the examples in literature for the different classes.

A. Structural invariants of subgraphs

1) Edge-Cut: Algorithms that create edge-cuts assign all
outgoing (or incoming) edges of a vertex v to the same
partition, and the proxy node for v in that partition is made the
master. These partitions are known as outgoing (or incoming)
edge-cuts. Conceptually, they can also be considered to be
the result of partitioning vertices among hosts and assigning
all outgoing (or incoming) edges of those vertices to those
hosts. It is convenient to view these partitions in terms of
the adjacency matrix of the graph (each non-zero entry in
the matrix corresponds to one edge). Outgoing edge-cuts
correspond to 1D row partitions of the matrix and incom-
ing edge-cuts correspond to 1D column partitions of this
matrix. Gemini’s Edge-balanced Edge-Cut (EEC) [6], Linear
Deterministic Greedy (LDG) [12], Fennel [13], Leopard [14],

TABLE I: Classification of partitioning policies with exam-
ples; streaming class of policies can be implemented in CuSP
(Leopard [14] is omitted because it is for dynamic graphs).

Class Invariant Examples

Streaming

Edge-Cut EEC [6], LDG [12], Fennel [13]

Vertex-Cut PowerGraph [4], HVC [5], Ginger [5],
HDRF [16], DBH [17]

2D-Cut CVC [11], [1], BVC [18], [7], JVC [18], [7]

Streaming- Edge-Cut ADWISE [15]Window

Offline Edge-Cut Metis [8], Spinner [10], XtraPulp [9]

ADWISE [15], Metis [8], Spinner [10], and XtraPulp [9]
produce edge-cuts.

2) Vertex-Cut: General vertex-cuts, on the other hand, do
not place any structural restriction on how edges are assigned
to partitions, so both incoming and outgoing edges connected
to a given vertex may be assigned to different partitions.
PowerGraph [4], Hybrid Vertex-Cut (HVC) [5], Ginger [5],
High Degree Replicated First (HDRF) [16], and Degree Based
Hashing (DBH) [17] produce general vertex-cuts.

3) 2D-Cut: 2D block partitions are a special form of vertex-
cuts in which the adjacency matrix of the graph is divided
into blocks, and the blocks are assigned to partitions. One
example is Cartesian vertex-cut (CVC) [11], [1], [7] as shown
in Figure 1c using the adjacency matrix representation of the
graph in Figure 1a. In CVC, rows of the adjacency matrix
are partitioned among hosts using any 1D block partitioning
policy, and masters are created on hosts for the vertices in
the rows assigned to it. The columns are then partitioned into
same sized blocks as the rows. These blocks of edges created
can be distributed among hosts in different ways; one example
is block distribution along the rows and a cyclic distribution
along columns, as shown in Figure 1c. CheckerBoard Vertex-
Cuts (BVC) [19], [18], [7] and Jagged Vertex-Cuts (JVC) [18],
[7] are other 2D block partitioning policies that have been
studied in the literature.

B. Streaming vs. offline partitioning algorithms

1) Streaming: These algorithms create graph partitions in
a pass over the sequence of edges, so the decision to assign
edges to hosts is made on the fly [12], [13], [4], [5]. These
algorithms may differ in (i) the heuristics used to assign edges
to hosts, (ii) a priori knowledge of graph properties exploited
by the algorithm, and (iii) the state maintained during the
partitioning. If decisions about edges and masters depend only
on structural properties of the graph, no state needs to be
maintained. In other algorithms, these decisions depend also
on what has been done with previously processed edges; these
algorithms must maintain a summary of the current state of
the partitioning. Any streaming partitioning algorithm can be
implemented using CuSP.

Many streaming algorithms try to assign roughly equal
numbers of vertices and edges to the different subgraphs while
minimizing the average replication factor. The hope is that this
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Fig. 1: An example of partitioning a graph for four hosts using two different policies.

will balance computational load among hosts while reducing
communication. LDG [12] and Fennel [13] try to co-locate
vertices with their neighbors. Both LDG and Fennel need the
total number of vertices in the graph to be computed before-
hand, and they keep track of the edge assignment decisions
made during partitioning. PowerGraph [4], HDRF [16], and
DBH [17] do not require any graph properties to be pre-
computed, but they maintain state to keep track of the load
distribution among hosts as well as the partial degree of each
vertex during partitioning. On the other hand, PowerLyra’s
HVC [5] does not keep any state during partitioning, but
it needs the degree of each vertex to be pre-computed be-
cause it treats high-degree and low-degree vertices differently.
PowerLyra’s Ginger [5] uses a variant of the Fennel heuristic
along with its degree-based hybrid-cut heuristic. Leopard [14]
extends the Fennel heuristic to partition dynamic graphs. All
other partitioning policies discussed in this paper, including
those implemented in CuSP, partition only static graphs.

2) Streaming-Window: These algorithms also create graph
partitions in a pass over the sequence of edges and decide to
assign edges on the fly, but they maintain a window of edges
scanned and use heuristics to pick and assign one of the edges
in the window; the edge assigned need not be the last scanned
edge. ADWISE [15] introduced such an algorithm. It may be
possible to extend CuSP to handle this class of algorithms, but
that is beyond the scope of this paper.

3) Offline: These algorithms take the complete graph as
input and make multiple passes over the graph to create
partitions [8], [20], [21], [22], [10], [9]. These algorithms
typically use methods like community detection [23] and
iterative clustering methods to compute high-quality partitions.
Metis [8], Spinner [10], and XtraPulp [9] use offline partition-
ing algorithms. CuSP is not designed for such algorithms.

III. CUSTOMIZABLE STREAMING EDGE PARTITIONING
FRAMEWORK

CuSP is a programmable framework for implementing
streaming edge partitioners. This section describes how it is
used by application programmers.

A. Using CuSP

The graph to be partitioned must be stored on disk in Com-
pressed Sparse Row (CSR) or Compressed Sparse Column
(CSC) format (CuSP provides converters between these and
other graph formats like edge-lists). For explanation, we will
assume the graph is read in CSR format (note outgoing edges
in CSC correspond to incoming edges in CSR).

To specify a particular partitioning policy, the programmer
must give CuSP the number of the partitions desired and
provide the rules for (i) choosing master vertices and (ii)
assigning edges to partitions. CuSP streams in the edges of
the graph from disk and uses these rules to assign them to
partitions and to choose masters.

To specify the partitioning rules, it is convenient to assume
that there is a structure called prop that stores the number
of desired partitions and the static properties of the graph
such as the number of nodes and edges, the outgoing edges
or neighbors of a node, and the out-degree of a node. This
structure can be queried by the partitioning rule; for example,
prop.getNumNodes() returns the number of nodes in the
graph.

As mentioned in Section II, partitioning rules may be
history-sensitive; for example, an edge may be assigned to
a partition that currently has the smallest number of edges
assigned to it. Each partitioning rule can define its own custom
type to track the state that can be queried and updated by
it. CuSP transparently synchronizes this state across hosts.

To specify the partitioning policy, users write two functions:
• getMaster(prop, nodeID, mState, masters): returns the

partition of the master proxy for the node nodeID;
masters can be used to query the (previously) assigned
partitions of the master proxies of the node’s neighbors.

• getEdgeOwner(prop, srcID, dstID, srcMaster, dstMas-
ter, eState): returns the partition to which the edge
(srcID, dstID) must be assigned; srcMaster and
dstMaster are the partitions containing the master
proxy of srcID and dstID nodes, respectively.

Users define the types of mState and eState tracked
in getMaster() and getEdgeOwner() functions, re-



Algorithm 1 Examples of user-defined getMaster.
function CONTIGUOUS(prop, nodeID, mState)

blockSize = ceil(prop.getNumNodes()/prop.getNumPartitions())
return floor(nodeID / blockSize)

function CONTIGUOUSEB(prop, nodeID, mState)
edgeBlockSize = ceil((prop.getNumEdges()+1)/prop.getNumPartitions())
firstEdgeID = prop.getNodeOutEdge(nodeID, 0)
return floor(firstEdgeID / edgeBlockSize)

function FENNEL(prop, nodeID, mState, masters)
for p = 0; p < prop.getNumPartitions(); p++ do

score[p] = − (α * γ * pow(mstate.numNodes[p], γ − 1))
for n ∈ prop.getNodeOutNeighbors(nodeID) do

if n ∈ masters then
score[masters[n]]++

part = p such that score[p] is highest
mstate.numNodes[part]++
return part

function FENNELEB(prop, nodeID, mState, masters)
if prop.getNodeOutDegree(srcID) > constThreshold then

return ContiguousEB(prop, mState, nodeID)
µ = prop.getNumNodes() / prop.getNumEdges()
for p = 0; p < prop.getNumPartitions(); p++ do

load = (mstate.numNodes[p] + (µ ∗ mstate.numEdges[p])) / 2
score[p] = − (α * γ * pow(load, γ − 1))

for n ∈ prop.getNodeOutNeighbors(nodeID) do
if n ∈ masters then

score[masters[n]]++

part = p such that score[p] is highest
mstate.numNodes[part]++
mstate.numEdges[part]++
return part

Algorithm 2 Examples of user-defined getEdgeOwner.
function SOURCE(prop, srcID, dstID, srcMaster, dstMaster, eState)

return srcMaster

function HYBRID(prop, srcID, dstID, srcMaster, dstMaster, eState)
if prop.getNodeOutDegree(srcID) > constThreshold then

return dstMaster
return srcMaster

function CARTESIAN(prop, srcID, dstID, srcMaster, dstMaster, eState)
find pr and pc s.t. (pr × pc) == prop.getNumPartitions()
blockedRowOffset = floor(srcMaster / pc) * pc
cyclicColumnOffset = dstMaster % pc
return (blockedRowOffset + cyclicColumnOffset)

spectively. Multiple calls to these functions with the same
arguments must return the same value. CuSP permits the
types of mState or eState to be void (when state is
not required). It also permits getMaster() to be defined
without the masters argument (when the master assignment
of a node does not depend on those of its neighbors).

CuSP runs on the same number of distributed hosts as
the number of desired partitions. After partitioning the graph,
CuSP constructs a partition on each host’s memory, in either
CSR or CSC format (as desired by the user). These partitions
can be written to disk if desired.

B. Examples of specifying partitioning policies

Algorithm 1 defines example functions for getMaster()
that assign (the master proxy of) the given node to a partition.

TABLE II: Examples of specifying partitioning policies using
CuSP; see Algorithms 1 and 2 for function definitions (Note:
HVC, CVC, and FEC in [5], [11], and [13], respectively, did
not use edge-balanced (EB) master assignment).

Policy getMaster getEdgeOwner

Edge-balanced Edge-Cut (EEC) [6] ContiguousEB Source
Hybrid Vertex-Cut (HVC) [5] ContiguousEB Hybrid
Cartesian Vertex-Cut (CVC) [11], [1] ContiguousEB Cartesian
Fennel Edge-Cut (FEC) [13] FennelEB Source
Ginger Vertex-Cut (GVC) [5] FennelEB Hybrid
Sugar Vertex-Cut (SVC) FennelEB Cartesian

Contiguous assigns a contiguous chunk of nodes to each
partition such that the chunks assigned to different partitions
are roughly equal-sized. ContiguousEB also assigns a con-
tiguous chunk of nodes to each partition, but the number
of outgoing edges of the nodes in each chunk are roughly
equal-sized (edge-balanced). Fennel uses a heuristic [13] to
calculate a score for each partition and assigns the node to the
partition with the maximum score. The score tries to prefer
partitions that have been assigned the neighbors of the node
while avoiding partitions that have been assigned more nodes.
FennelEB uses a similar heuristic [5], but the score avoids
partitions that have been assigned more load, where the load
is a combination of the nodes assigned to that partition and
the number of outgoing edges of those nodes (edge-balanced).

Example functions for getEdgeOwner() are defined in
Algorithm 2. Source assigns an edge to the partition con-
taining the master proxy of its source. Hybrid [5] performs
a similar assignment only if the degree of the source is below
a threshold; otherwise, the edge is assigned to the partition
containing the master proxy of its destination. To assign edges
in Cartesian, the graph is viewed as a sparse matrix and the
matrix is blocked in both dimensions; the number of blocks in
each dimension match the number of partitions (block sizes
can vary depending on the master assignment, as shown in
Figure 1c). Let (i, j) be the block in the ith row and jth

column. An edge from s to d belongs to the (ms,md) block,
where ms and md are the masters of the source and the
destination, respectively. The partitions p are considered to
be in two dimensional grid of pr and pc. The row blocks
are distributed among pr partitions in a blocked way, and the
column blocks are distributed among pc partitions in a cyclic
way (Figure 1c). This can be done using simple arithmetic.

To specify a partitioning policy, we can pick one func-
tion each from Algorithms 1 and 2. This would yield 12
different policies, and Table II lists 6 out of them (omitting
Contiguous and Fennel). Each of these policies has two
variants (24 policies in total) - one that reads the input graph
in CSR format and another that reads it in CSC format. These
policies correspond to those published in literature or variants
of them, except Sugar Vertex Cut (SVC), which is a new
policy that combines existing heuristics in a novel way. Several
popular graph analytical frameworks use one of these policies;
Gemini [6] uses EEC, PowerLyra [5] uses HVC or GVC,



Graph 

Graph Reading from Disk Edge
Assignment

Graph
Allocation Graph Construction

Host 1

Graph Reading from Disk Edge
Assignment

Graph
Allocation Graph Construction

Host 2

Time

Disk Reading Communication

Edge Counts,
(Master/)Mirror

Info 
Edge Data

Master Assignment

Master Assignment

Master
Assignments 

Disk

Fig. 2: Control and data flow of CuSP (partitioning state synchronization is omitted).

and D-Galois [1], [7] uses EEC, HVC, or CVC. PowerLyra
introduced HVC and GVC considering incoming edges and
in-degrees, so to use them in CuSP, the input graph would
be read in CSC format. This illustrates the programmability
and customizability of CuSP. Through the general interface of
CuSP, the user can thus implement any streaming edge-cut or
vertex-cut policy using only a few lines of code.

IV. IMPLEMENTATION OF CUSP

This section describes the implementation of CuSP. Sec-
tion IV-A gives an overview. Section IV-B explains the main
phases of execution of the partitioner. Section IV-C explains
how the implementation uses parallelism to efficiently partition
graphs. Section IV-D presents optimizations used by CuSP to
reduce communication overhead.

A. CuSP Overview

The input graph is stored on disk in CSR or CSC format.
Without loss of generality, we assume the graph is stored in
CSR format. Each host builds one partition of the graph in
CSR or CSC format. If an edge should be assigned to the
local partition, it is added to that partition; otherwise, it is
forwarded to the appropriate host. CuSP handles a number
of complications that arise in implementing this approach in
parallel efficiently.

• Graphs in CSR or CSC format cannot be built incremen-
tally since allocating the underlying arrays for CSR or
CSC format requires knowing the number of nodes and
outgoing or incoming edges for each node. Therefore,
these counts must be determined before the graph can be
constructed.

• Communication of edges between hosts is required since
a host may process an edge and decide it belongs to a
different partition than the one it is building.

• If the partitioning rules are history-sensitive, decisions
made on one host will affect decisions made by other
hosts. Therefore, partitioning state must be synchronized
on all hosts, but doing this for every update made to the
state by any host (as is done in cache-coherent systems)
is expensive.

CuSP transparently handles these complications.

B. Phases of Partitioning

Partitioning in CuSP is split into five phases, as illustrated in
Figure 2: graph reading, master assignment, edge assignment,
graph allocation, and graph construction. We describe the
phases below assuming partitioning state is not synchronized
(its synchronization is explained in Section IV-D).

1) Graph reading: The edge array in the CSR format is
divided more or less equally among hosts so that each host
reads and processes a contiguous set of edges from this array.
To reduce inter-host synchronization, this division is rounded
off so that the outgoing edges of a given node are not divided
between hosts. In effect, this approach assigns a contiguous
set of vertices to each host so that each host has roughly
the same number of edges, and the outgoing edges of those
vertices are processed by that host. Users can change this
initial assignment so that it takes nodes into consideration as
well using command line arguments to assign importance to
node and/or edge balancing. During this phase, each host loads
its set of vertices and edges from disk into memory, so future
phases will directly read them from memory.

2) Master assignment: Each host maintains its own local
masters map from a vertex’s global-ID to the partition
assigned to contain its master proxy. Each host loops through
the vertices whose edges it has read from disk. For each such
vertex v, it determines the partition to assign the master of
that vertex using getMaster() and stores it in masters.
The masters map is periodically synchronized with that
of the other hosts (more details in Section IV-D). It is also
synchronized after all vertices have been assigned to partitions.

3) Edge assignment: As shown in Algorithm 3, each host
hi loops through the edges that it has read from disk. For each
vertex v it is responsible for and for each host hj , it determines
(i) how many outgoing edges of v will be sent to hj and (ii)
whether the proxy vertices on hj for the destinations of these
edges will be mirrors. Once all edges have been processed,
this information is sent from hi to all other hosts. The phase
concludes once a host has received data from all other hosts.

4) Graph allocation: When the edge assignment phase is
complete, a host has a complete picture of how many vertices



Algorithm 3 Edge assignment phase of CuSP.
Input: Gh = (Vh, Eh) where Vh is the set of vertices read by host h, Eh is

the set of all outgoing edges of vertices Vh; (a 6= b)⇒ (Va ∩Vb = {})
Let a be this host
Let outgoingEdgeCount[h][s] represent the number of outgoing edges of

node s that host a will send to host h: initialized to 0
Let createMirror[h][d] being true represent host h needs to create a mirror

for node d: initialized to false
1: for s ∈ Va do
2: for outgoing edges of s, (s, d) ∈ Ea do
3: h = GETEDGEOWNER(prop, s, d, masters[s], masters[d], eState)
4: outgoingEdgeCount[h][s]++
5: if h 6= masters[d] then
6: createMirror[h][d] = true
7: for all other hosts h do
8: send outgoingEdgeCount[h] to h
9: send createMirror[h] to h

10: toReceive = 0
11: for all other hosts h do
12: save received outgoingEdgeCount into outgoingEdgeCount[h]
13: ∀s, toReceive + = outgoingEdgeCount[h][s]
14: save received createMirror into createMirror[h]

and edges it will have in its partition. Each host allocates
memory for its partition in CSR format and also creates a map
from global-IDs to local-IDs for its vertices. Note that at this
point, the host has not yet received its edges from other hosts,
but by allocating memory for edges beforehand, it is possible
to insert edges in parallel into the data structure as they are
received from other hosts. Additionally, partitioning state is
reset to initial values so calls to the user-specified functions
will return the same value during the graph construction phase
as they did in the edge assignment phase.

5) Graph construction: As described in Algorithm 4, each
host will again loop over all of its read edges. Instead of
compiling metadata like the assignment phase, it sends the
edge to the appropriate host (using information returned by
getEdgeOwner()). Edges are inserted in parallel into the
CSR structure constructed in the previous phase whenever they
are deserialized from an incoming message. Once all hosts
have received the edges that they expect from all other hosts
and have inserted their edges into the CSR structure, each
host performs an in-memory transpose of their CSR graph to
construct (without communication) their CSC graph if desired.

C. Exploiting Parallelism

CuSP exploits both multi-core and inter-host parallelism to
perform graph partitioning quickly.

1) Parallel iteration over vertices and edges: The master
assignment, edge assignment, and graph construction phases
require hosts to iterate over vertices and edges while updating
data structures. In CuSP, this is implemented using parallel
constructs in the Galois system [24] and thread-safe data
structures (user-defined functions are expected to update par-
titioning state using thread-safe atomics or locks provided by
Galois). The system implements work-stealing among threads
in a host (not among hosts), which is useful for load-balancing
since threads can steal vertices that have been assigned to other
threads if they finish their assigned work early.

Algorithm 4 Graph construction phase of CuSP.
Input: Gh = (Vh, Eh) where Vh is the set of vertices read by host h, Eh is

the set of all outgoing edges of vertices Vh; (a 6= b)⇒ (Va ∩Vb = {})
Let a be this host
Let toReceive represent the number of edges this host expects to receive

from all other hosts (determined in edge assignment phase)
1: for s ∈ Va do
2: for outgoing edges of s, (s, d) ∈ Ea do
3: h = GETEDGEOWNER(prop, s, d, masters[s], masters[d], eState)
4: if h == a then
5: construct (s, d) in local CSR graph
6: else
7: send edge (s, d) to host h
8: while toReceive > 0 do
9: receive edge (s, d) sent to this host

10: construct (s, d) in local CSR graph
11: toReceive−−
12: if CSC format is desired then
13: construct local CSC graph from CSR graph (in-memory transpose)

2) Parallel prefix sums: In some phases of partitioning, a
vector is iterated over to determine a subset of elements that
must be written into memory in the same order in which they
appear in the original vector (e.g., a vector specifying how
many edges to be received for each node from a particular
host; some elements may be 0, which should be ignored in
the write). CuSP uses prefix sums to parallelize this operation
without requiring fine-grain synchronization. In the first pass,
each thread is assigned a contiguous, disjoint portion of a
vector to read, and it determines how many elements that it
needs to write. A prefix sum is calculated from the amount
of work each thread is assigned: from this prefix sum, each
thread knows the location in memory that it should begin to
do its writes at. Each thread reads its portion of the vector
again in the second pass, at which point it will actually write
data to a memory location using the prefix sum.

3) Serializing and deserializing messages in parallel:
Serialization and deserialization of message buffers in the
graph construction phase can be done in parallel. Each thread
can serialize a node ID and all the node’s edges to send
to another host into its own thread-local buffer for sending.
Similarly, each thread can receive buffers sent from other
hosts and deserialize and process them in parallel to other
threads. Since the edge assignment phase has already allocated
memory for every node a host is expecting to receive and
since messages from other hosts contain all the data for some
particular node, threads can construct edges in parallel as no
thread will interfere with other threads’ writes.

D. Efficient Communication

Communication can be a bottleneck if not done efficiently.
CuSP is designed to communicate efficiently using various
methods of reducing communication overhead.

1) Dedicated communication thread: CuSP is typically run
with as many threads as the number of cores on each host.
CuSP uses a single additional hyperthread [25], [26] dedicated
for communication and responsible for all sends and receives
of data. This allows computation on the rest of threads to
proceed without needing to pause for communication except



when serializing and deserializing message buffers (which
itself is done in parallel). The communication thread can
use MPI or LCI [26] for message transport between hosts
(LCI has been shown to perform well in graph analytics
applications [26], [1]).

2) Reducing volume of communication: Since each host
knows what vertices other hosts are responsible for reading,
there is no need to send node ID metadata in the edge
assignment phase. A host will send a vector (whose size is the
number of vertices it was assigned for reading) where data at
index i corresponds to the ith assigned node. The receiving
end is able to map the data in this vector to a particular node
based on its position.

Additionally, in edge assignment, it may be the case that a
host does not have any edges to send to another host or does
not need to inform the host to create an incoming node mirror.
In such cases, it suffices to send a small message to that host
telling it that there is no information to be sent.

3) Buffering large messages in graph construction: In
graph construction, CuSP serializes a node ID and its edges
in a buffer in preparation for sending them out to the owner.
Instead of sending this buffer out immediately after serializa-
tion, CuSP waits until the buffer for this host is sufficiently
full before sending it out. Larger buffers reduce the number
of messages and the pressure on the underlying network
resources [26], thereby improving the communication time
significantly up to a certain buffer size. This is a tunable
parameter; the evaluation uses a buffer threshold of 8MB.

4) Synchronizing partitioning state: If the partitioning rules
are history-sensitive, decisions made on one host will affect
decisions made by other hosts in general. Therefore, parti-
tioning state must be synchronized on all hosts, but doing this
for every update made to the state by any host, as is done
in cache-coherent systems, is too expensive. Therefore, in the
master assignment, edge assignment, and graph construction
phases, CuSP uses periodic synchronization across all hosts
to reconcile decisions made on different hosts. At a high
level, this is similar to bulk-synchronous parallel execution.
Execution is divided into rounds. At the beginning of each
round, all hosts have the same partitioning state. During the
execution of the round, they make independent updates to their
copy of the partitioning state, and at the end of the round,
global reductions are used to obtain a unified partitioning state
(as an example, consider keeping track of the number of edges
assigned to each partition). The correctness of partitioning
does not depend on how often this reconciliation is done, but it
can affect the quality of the partitioning. In CuSP, the number
of such bulk-synchronous rounds is a parameter that can be
specified at runtime. Note that if no partitioning state is used
by a policy, then synchronization of that state is a no-op in
CuSP.

5) Synchronizing masters: In the master assignment
phase, the masters map is synchronized among all hosts
along with the partitioning state. In other words, CuSP uses pe-
riodic synchronization for this too. Unlike the synchronization
described previously, synchronization in the master assignment

phase is not completely deterministic nor bulk-synchronous
parallel: at the end of a round, if a host finds it has received no
data, instead of waiting to receive data from other hosts, it will
continue onto the next round. This lessens the effects of load
imbalance in the synchronization rounds and adds a degree
of non-deterministic asynchrony to the master assignment (it
need not be deterministic since a master assignment decision
need only be made once and saved). CuSP further optimizes
its synchronization. If getMaster() is defined without
masters, and partitioning state is not used, then the master
assignment is a pure function, so CuSP does not synchronize
masters among hosts. Instead, each host determines the
master assignment for the nodes that need it (replicating
computation instead of communication). On the other hand,
if getMaster() is defined without the masters map but
uses a partitioning state, then synchronization is not needed
during the master assignment phase, so CuSP synchronizes it
only after the phase ends.

The local masters map can become prohibitively big
(running out-of-memory) if it stores the masters of all (global)
nodes. CuSP, therefore, does not try to ensure that each host
has the same local map after each synchronization round.
Instead, the local map on a host is only updated with a master
assignment for a node if it is going to be queried later on that
host. This does not require complex analysis. During edge
assignment and edge construction phases, a host only queries
the master assignment of nodes whose edges it is reading
and the neighbors of those nodes. After partitioning, a host
would need to know the master assignment of all proxies in
it, which is determined during the edge assignment phase.
This information can be used to ignore master assignments
for every other node. CuSP also elides communication of such
assignments. Each host initially requests the master assignment
of the neighbors of the nodes whose edges it is reading.
In master assignment phase, assignments are sent only if a
corresponding request had been received. In edge assignment
phase, more master assignments are sent if the edge assigned
to a host does not contain the master proxies of its endpoints.
CuSP thus significantly reduces communication of masters.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the policies implemented in
CuSP and compare with XtraPulp [9], the state-of-the-art
offline graph partitioner. Section V-A gives the experimental
setup. Section V-B details the partitioning time experiments
while Section V-C details the partitioning quality experiments.
Section V-D examines the impact of some optimizations
discussed in Section IV-D on partitioning time.

A. Experimental Setup

Experiments were conducted on the Stampede2 [27] cluster
at the Texas Advanced Computing Center using up to 128
Intel Xeon Platinum 8160 (“Skylake”) nodes with 48 cores
with a clock rate of 2.1 Ghz, 192GB of DDR4 RAM, and
32KB L1 data cache. The cluster uses a Lustre file system,
which distributes files across multiple disks to allow many



TABLE III: Input (directed) graphs and their properties.

kron30 gsh15 clueweb12 uk14 wdc12

|V | 1,073M 988M 978M 788M 3,563M
|E| 17,091M 33,877M 42,574M 47,615M 128,736M
|E|/|V | 15.9 34.3 43.5 60.4 36.1
Max OutDegree 3.2M 32,114 7,447 16,365 55,931
Max InDegree 3.2M 59M 75M 8.6M 95M
Size on Disk (GB) 136 260 325 361 986

TABLE IV: Average speedup of CuSP partitioning policies
over XtraPulp in partitioning and application execution time.

Partitioning Time Application Execution Time

EEC 21.9× 1.4×
HVC 10.2× 1.2×
CVC 11.9× 1.9×
FEC 2.4× 1.1×
GVC 2.4× 0.9×
SVC 2.3× 1.6×

nodes to read from files in parallel. Machines in the cluster
are connected with a 100Gb/s Intel Omni-Path interconnect.
Code is compiled with g++ 7.1.

The partitioning policies from Table II were implemented
in CuSP: Edge-balanced Edge-Cut (EEC) [6], Hybrid Vertex-
Cut (HVC) [5], Cartesian Vertex-Cut (CVC) [11], [1], Fennel
Edge-Cut (FEC) [13], Ginger Vertex-Cut (GVC) [5], and
Sugar Vertex-Cut (SVC). These policies are specified in CuSP
using the functions defined in Algorithm 1 and 2; HVC, FEC,
GVC, and SVC use a degree threshold of 1000 and, FEC,
GVC, and SVC use γ = 1.5 and α = mhγ−1/nγ , where
n is the number of nodes, m is the number of edges, and
h is the number of hosts. CuSP partitions read the CSR
format from disk and produce partitions in the CSR format.
In EEC, a host creates a partition from the nodes and edges
it reads from the disk; therefore, no communication among
hosts is required during partitioning. In HVC and CVC, the
master assignment phase does not require communication, but
edge assignment/construction phases involve communication.
EEC, HVC, and CVC do not have partitioning state (so no
synchronization of it is necessary). In contrast, during master
assignment in FEC, GVC, and SVC, the partitioning state
requires synchronization; we use 100 synchronization rounds
unless otherwise specified. CuSP uses a message buffer size
of 8MB unless otherwise specified.

We compare the policies implemented in CuSP with Xtra-
Pulp [9], the state-of-the-art offline partitioning system. Unlike
CuSP, it only produces edge-cut partitions in which all edges
of a node are assigned to the same host.

Experiments use CuSP and XtraPulp [9] with five different
power-law graphs, whose properties are listed in Table III:
kron30 is synthetically generated using a Kronecker gener-
ator [28] (we used weights of 0.57, 0.19, 0.19, and 0.05, as
suggested by graph500 [29]) and gsh15, clueweb12, uk14 [30],
[31], [32], [33], and wdc12 [34] are the largest publicly
available web-crawls.

Partitioning times for CuSP for EEC, HVC, CVC, FEC,
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Fig. 3: Partitioning time for XtraPulp and policies in CuSP.

GVC, and SVC and XtraPulp’s edge-cut are presented for
32, 64, and 128 Skylake hosts. All partitioners use directed
versions of the graphs. Both systems create as many partitions
as there are hosts in these experiments. Partitioning time for
CuSP includes graph reading, partitioning, and graph construc-
tion, while partitioning time for XtraPulp only includes graph
reading and master assignment (XtraPulp does not have built-
in graph construction). The communication layer is MPI for
both CuSP and XtraPulp for these experiments (CuSP can use
LCI [26], but XtraPulp cannot, so for fairness we use MPI).
All results presented are an average of three runs.

To evaluate quality, partitions generated by the policies are
used in D-Galois [1], the state-of-the-art distributed graph
analytics system, and run with breadth-first search (bfs),
connected components (cc), pagerank (pr), and single-source
shortest paths (sssp) on 64 and 128 Skylake nodes (cc uses
partitions of the undirected or symmetric versions of the
graphs and their partitioning time is omitted due to lack of



TABLE V: Data volume sent in edge assignment and graph
construction phases of CuSP for 128 hosts.

Assignment Construction

Data (GB) Data (GB)

kron30 CVC 71 129
HVC 1016 76

gsh15 CVC 53 31
HVC 933 0.9

clueweb12 CVC 52 68
HVC 690 0.1

uk14 CVC 41 14
HVC 637 1

space). The source node for bfs and sssp is the node with the
highest out-degree. pr is run for a maximum of 100 iterations
with a tolerance value of 10−6. The communication layer is
LCI [26] for all partitions (XtraPulp partitions are loaded into
D-Galois, so XtraPulp being limited to MPI is not a factor).
These results are also presented as an average of three runs.

B. Partitioning Experiments

Figure 3 shows the partitioning time of six different CuSP
policies and XtraPulp for five different graphs at 32, 64,
and 128 Skylake hosts. It is evident that CuSP partitions a
graph faster than XtraPulp and Table IV shows the average
speedup. Being a streaming partitioner, CuSP does not need
to do extensive computation or communication on the graph
when deciding how to partition, giving it an advantage over
XtraPulp, which iteratively refines its partitions over time,
incurring both computation and communication overhead. Ad-
ditionally, XtraPulp fails to allocate memory for certain large
inputs, making it unable to run for some of our experiments at
32 hosts and 64 hosts. CuSP also runs out of memory in cases
where imbalance of data exists among hosts for partitioning.

EEC produces each partition from the nodes and edges read
by the host from disk; therefore, no communication is required.
EEC represents the minimum amount of time required by
CuSP to partition the graph. On average, EEC is 4.7× faster
than all other CuSP-implemented policies.

Communication in CuSP is also efficient. Table V shows
the amount of data communicated in the edge assignment
and graph construction phases for CVC and HVC on 128
hosts. CVC is designed to only communicate with its row or
column hosts in the adjacency matrix while HVC may need to
communicate with all hosts. Although HVC can communicate
up to an order of magnitude more data in the worst case
over what CVC communicates, HVC is only 1.2× slower than
CVC on average, which shows that communication of large
amounts of data does not cause a proportional degradation in
partitioning time.

Figure 4 shows a breakdown of the partitioning time into
time spent in the different phases of CuSP for clueweb12
and uk14 on 128 hosts. For EEC, disk reading time takes
the majority of the time in graph partitioning as no inter-
host communication is required. For HVC and CVC, edge

clueweb12 uk14

EEC
HVC

CVC
FEC

GVC
SVC

EEC
HVC

CVC
FEC

GVC
SVC

0

50

100

150

200

Ti
m

e 
(s

ec
)

Graph Construction
Graph Allocation/Other
Edge Assignment
Master Assignment
Graph Reading

Fig. 4: Time spent by partitioning policies in different phases
of CuSP for clueweb12 and uk14 on 128 hosts.

assignment and graph construction involve communication, so
disk bandwidth is not as major a bottleneck as it is in EEC.
HVC takes more time in edge assignment because it commu-
nicates more data (as shown in Table V) and communicates
with all hosts, unlike CVC. The master assignment phase in
EEC, HVC, and CVC is negligible because it does not involve
communication. In contrast, the main bottleneck of FEC,
GVC, and SVC comes from the master assignment phase.
Moreover, due to the increased likelihood of moving locally
read nodes to other hosts compared to the other partitioning
policies which keep their masters local, more time may be
spent in the other phases as well.

These results show that CuSP can produce partitions faster
than XtraPulp can, in spite of producing more general parti-
tions like vertex-cuts. CuSP partitions are 5.9× faster to cre-
ate than XtraPulp partitions. Policies using ContiguousEB
master assignment (EEC, HVC, CVC) are 14.0× faster than
XtraPulp while policies using FennelEB master assignment
(FEC, GVC, SVC) (and hence have a non-trivial master
assignment phase) are 2.4× faster.

C. Quality Experiments

While the speed and generality of partitioning are important,
quality of the partitions is paramount. Partitions may be evalu-
ated using structural metrics such as replication factor of nodes
and load balancing of nodes or edges. However, these are not
necessarily correlated to execution time of applications [7].
Therefore, our evaluation focuses on the runtime of graph
applications using different partitioning strategies.

Figure 5 and 6 present execution time of four graph appli-
cations for four inputs on 64 and 128 hosts, respectively, using
D-Galois [1] with partitions from XtraPulp and CuSP. Table IV
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Fig. 5: Execution time of different benchmarks and inputs
using partitions generated by all policies on 64 hosts.

shows the average execution time speedup of applications
using CuSP partitions over those using XtraPulp partitions.

XtraPulp, EEC, and FEC are edge-cuts and are comparable
in quality for many applications and inputs. They take ad-
vantage of D-Galois edge-cut communication optimizations.
The difference among them is a difference of master vertex
assignment, which may change performance due to graph
locality and the communication required. EEC has the advan-
tage over XtraPulp and FEC in that it is simpler and faster
to generate. CVC and SVC perform better than EEC and
XtraPulp in several cases as they are designed to optimize
communication among hosts by reducing communication part-
ners to hosts in the same row or column in the adjacency
matrix, and D-Galois takes advantage of this aspect to improve
communication. CVC does not necessarily perform the best;
previous studies [7] have shown that it can perform better at
a higher number of hosts. SVC may differ from CVC due
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Fig. 6: Execution time of different benchmarks and inputs
using partitions generated by all policies on 128 hosts.

to different master assignment that focuses on more balanced
edges: this can lead to improved runtime or degraded runtime
depending on how the partitioning ends up. For example, SVC
has better runtime than CVC for pr on clueweb12 at 128 hosts
because computational load balance is better for SVC due to
the different master assignment used.

Finally, since both HVC and GVC are general vertex-cuts,
they lack structural invariants that can be exploited by com-
munication optimizations in D-Galois [1]. Due to this, they
generally perform worse than the other partitioning policies
evaluated in this paper. It is important to note that this is an
artifact of the partitioning policies and not a reflection on the
quality of the partitions produced by CuSP.

These results show that partitions generated from CuSP per-
form just as well or better than XtraPulp-generated partitions
even though CuSP is more general and faster than XtraPulp.
Partitions generated by CuSP perform 1.3× better on average
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than XtraPulp partitions on our evaluated applications and
graphs. Partitions using ContiguousEB master assignment
(EEC, HVC, CVC) are 1.5× faster than XtraPulp while
policies using FennelEB master assignment (FEC, GVC,
SVC) are 1.1× faster.

D. Impact of Optimizations

In this section, we briefly examine the impact of buffering
messages as well as the impact of synchronizing partitioning
state during graph partitioning.

1) Message Buffering: Figure 7 shows the effect of message
buffer size on partitioning time for CVC on 128 hosts. We
vary the message size from 0MB (in which a message is sent
out immediately rather than buffered until a size threshold)
to 32MB. Increasing the buffer size to a larger value past
a certain point neither degrades nor improves performance.
However, sending a message immediately has negative effects
on the total time it takes to partition a graph. Even buffering
messages to a small amount like 4MB is enough to benefit
partitioning time greatly: on average, a message buffer size of
4MB is 4.6× faster in partitioning than a message buffer size
of 0MB. Therefore, buffering messages during partitioning is
a key optimization in CuSP that is critical for performance.

2) Frequency of State Synchronization: We explore the
effect of changing the frequency of partitioning state synchro-
nization on the partitioning time and the partitioning quality
of SVC.

Table VI shows the time it takes to do partitioning on
clueweb12 and uk14 with varying rounds in the master assign-
ment phase that perform synchronization of master assignment
and partitioning state: 1 means that synchronization occurs
after all hosts have assigned their nodes to partitions while
1000 means synchronization checks occur 1000 times in total

TABLE VI: Partitioning time (sec) of SVC in CuSP on 128
hosts with different number of synchronization rounds.

Synchronization Rounds
1 10 100 1000

clueweb12 205.8 200.8 212.3 498.1
uk14 108.1 101.5 107.2 189.9

TABLE VII: Execution time of different benchmarks (sec)
using partitions generated by SVC with different number of
synchronization rounds in CuSP on 128 hosts.

Synchronization Rounds
1 10 100 1000

clueweb12
bfs 7.2 7.5 6.6 6.2
cc 7.5 6.7 8.3 8.5
pagerank 26.8 31.4 35.4 30.9
sssp 11.0 12.1 11.7 10.1

uk14

bfs 35.8 35.4 22.3 23.5
cc 3.4 2.9 2.7 3.0
pagerank 16.5 16.4 11.0 11.6
sssp 42.6 39.9 27.3 26.8

during the phase (giving hosts a more recent global view of
current partitioning state to better inform master assignment
decisions). As the number of synchronizations goes ups, the
time taken does not change significantly until it reaches a
particularly high number of rounds such as 1000. This can
be attributed to the lack of barriers between rounds in the
master assignment phase: at the end of a round, if there is no
data to receive from another host, execution simply continues
in order to avoid blocking on other hosts.

Table VII shows the runtime of the graph analytics appli-
cations with the SVC partitions generated by the different
round counts during the master assignment phase. Allowing
CuSP to synchronize partitioning state more often can allow a
policy to make better decisions when assigning masters, and
this translates into runtime improvements to a certain point
as shown with uk14. However, it may not necessarily lead
to runtime improvements as shown with clueweb12, where
different number of rounds leads to different behavior for the
different benchmarks.

Increasing the number of synchronizations can improve
performance for the application, but such gains may be offset
by the increase in partitioning time. There may be a sweet
spot for the number of synchronizations that differ for each
policy and application: CuSP allows users to experiment with
the number of synchronization rounds as a runtime parameter.

VI. RELATED WORK

Graph partitioning is an important pre-processing step for
various distributed graph analytics systems. Distributed graph
analytics systems [1], [2], [3], [4], [5], [6] support different
partitioning policies that trade-off factors like partitioning
time, load balancing across hosts, efficient communication, etc.

a) Distributed streaming graph partitioning: It is known
that graph partitioning for existing distributed graph systems
such as PowerGraph [4], PowerLyra [5], Gemini [6], and D-
Galois [1] can take almost as long or longer than running the



application itself. CuSP is designed to reduce the partition-
ing time significantly. In addition, systems like Fennel [13],
LDG [12], and Gemini [6] only support streaming edge-cut
partitioning policies; others such as PowerGraph [4] and Pow-
erLyra [5] only support general vertex-cut policies. Gluon [1],
[7] has shown that it is important for a distributed graph
analytics framework to support various partitioning policies
in order to get good performance for various algorithms and
inputs at different scales. CuSP is a generic and fast streaming
graph partitioning framework enabling users to easily specify
the desired policy that is up to an order of magnitude faster
than past distributed graph systems (e.g., it takes roughly 40
seconds to partition clueweb12 on 128 Skylake nodes with
CuSP compared to nearly 400 seconds D-Galois takes on 256
KNL nodes [1]).

b) Shared-memory and distributed offline graph parti-
tioning: Systems like Metis [8] and PuLP [20] create offline
partitions on a single host in shared-memory. To partition
large graphs that do not fit in the memory of a single host,
systems like Ugander et al. [21], Wang et al. [22], Spinner [10],
and XtraPulp [9] distribute partitioning across multiple hosts.
Both shared-memory and distributed offline systems can use
community detection [23] and iterative clustering methods to
compute high-quality partitions.

XtraPulp [9] is the state-of-the-art fast distributed offline
partitioning framework. It only supports edge-cuts. In contrast,
CuSP is a streaming graph partitioning framework which is
roughly 6× faster than XtraPulp and is more general as it
can support edge-cuts, vertex-cuts (like HVC), 2D blocking
partitioning policies (like CVC), etc. It also provides an easy
to use framework for users to explore various policies.

VII. CONCLUSION

This paper presents CuSP, a fast streaming graph partition-
ing framework which (i) permits users to specify the desired
partitioning policy at a high level of abstraction and (ii)
generates high-quality graph partitions fast. For example, it
can partition wdc12, one of the largest publicly available web-
crawl graphs with 4 billion vertices and 129 billion edges, in
under 2 minutes with 128 machines. Our experiments show
that it can produce quality partitions 6× faster than stand-
alone partitioners in the literature while producing high-quality
partitions and supporting a wide range of partitioning policies.
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